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Data-driven macro-velocity model— areal data example
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ABSTRACT

A specialinversion algorithm males use of data-derivedcommon-eflection-surface
stak attributesto provide a 2-D macio-velocitymodelof the subsurface High fre-
guencyand low frequencyfluctuationsof the common-eflection-surfacestak at-
tributesalongan eventrequire a sophisticatedgmoothingmethod.Thus,theinversion
performedafter the smoothinggetsmore robust. A data-drivenmacio-velocitymodel
for a real datasetis presented.

INTRODUCTION

The aim of thiswork is to geta 2-D layeredvelocity modelof the subsurbcewhich
senes, e.g., as macro-\elocity model in time or depth migration. We use a spe-
cial inversionalgorithmof (Majer, 2000)which takesasinput data-dewed common-
reflection-surdce(CRS)stackattributes(Jageretal., 2001).Eachtriplet of CRSstack
attributes(a, Ryrp, Ry) determines stackingsurfaceto simulatea zero-ofset(ZO)

samplefor point P(zo, ty). Here,zy, denoteshe surfacelocationin termsof the mid-

point coordinater wherethe normalray emepges. t, is the two-way ZO traveltime.
The anglea is the emegenceangleof the normalray measured/ersusthe surface
normal. Two theoreticaleigenvave experiments(Hubral, 1983) are associatedvith

theradii of curvature Ry p andRy. Ry;p is theradiusof wavefrontcurvatureat z,

originatingfrom a point sourceat the normalincidencepoint (NIP). This NIP is the
endpointof thenormalray in the depthdomain. Analogously an explodingreflector
experimentin thevicinity of the NIP yieldsthe so-calledhormalwave emeging with

radiusRy atzxy.
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INVERSION BY MEANS OF CRSATTRIBUTES

Theinversionalgorithmusesthe CRSstackattributesto back-propagattheray asso-
ciatedwith theseattributes.

0

i

2 [km]

Figurel: 2-D macro-\elocity modeldervedfrom arealdata-set(a) shavs a velocity
modelwith constantayervelocity. It is the meanvelocity thatis obtainedfrom mary
tracesandits correspondin@ttributesassociateavith thesameavent. (b) shovslayers
with laterallyinhomogeneougelocities. The half-spacéeneathhelastinterfacewas
filled with a constantselocity. The colourcorresponds$o thelayervelocities[km/s].

In addition, picked ZO timesdivided by two, areneededo find the endpointsof
theraysof oneevent. We usethe algorithmfor horizoninversionof (Majer, 2000)for
continuouslylayersseparatedy smoothcurved interfaces. The emegenceanglea
determineshetake-off angleof the back-propagatechy. The velocity for eachindi-
vidual ray, j, of thefirst layeris obtainedby v; = ’Z”PJ With this velocity andthe
known ZO traveltime,theendpoinis determinedAll endpomtshatcorrespondo one
picked eventareusedto calculatea smoothinterfaceby meansof splineapproxima-
tion. In thisapproachRy is notusedfor constructingheinterfaces.The curvatureof
theinterfacess computedwith splineapproximationThe next layersareobtainedoy
applyingthetransmissioaw andSnell's law to the back-propagatethysassociated
with the next event.

Now, the macro-\elocity modelcanbe built up in two alternatve ways: Firstly, it
canconsistof layerswith meanconstantvelocitiesseparatedyy the smoothednter
facesseeFigurel (a). Thosemeanconstantvelocitiesarethe arithmeticmeanof all
interval velocitiesdeterminedor all ray segmentsin alayer. Secondlythelayerscan
have laterally varying velocities. For thefirst layer, e.g.,the velocitiesare given by
vj = Iz’f”’ﬁ Thelayeris thenfilled with thesevelocities,seeFigurel (b). The half-
spacebeneathheIastsmoothednterfacels filled with a constantelocity providedby
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theuser

To obtaina macro-\elocity model,we have to executethefollowing four steps:

e Pickseismicevents,
e extractthecorrespondingCRSstackattributes,
e smooththeattributes,and

e performtheinversion.

PICKING OF SEISMIC EVENTS
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Figure2: Two examplesof simulatedZO time sectionsasa resultof the CRS stack:
(a) Syntheticdatawith four interfacesandconstantvelocity layers. The sectionwas
generatedy ray tracingusinga zero-phas®icker waveletwith a peakfrequeny of

15 Hz. (b) Realdatascaledwith automaticgain control. The arrovs indicatesome
seismicevents,which wherepicked by the picking programwe used.

Here, picking meangto follow a seismic(primary) reflectioneventfrom traceto
tracein the time domain. The time samplesof oneandthe sameeventarefound by
comparingthe phaseof adjacentraces. We pick the maximumamplitudebecause
robust CRSstackattributesarefound by a coherenceanalysisthatis morereliableat
the extremaof thewaveletthanatthe zero-crossings.
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For syntheticdata, it is easyto pick theseevents,seeFigure2 (a). As thereare
no conflictingeventsandthe signal-to-nois€S/N) ratiois high, the picker follows the
sameeventover the entireZO section. The syntheticdatahave beengeneratedising
a zero-phas&icker waveletwith a peakfrequeny of 15 Hz. Pickingthe maximum
amplitudeyieldsthe two-way traveltime from the sourceto the interfaceandbackto
therecever atthe surface. If seismiceventsin arealdatatime section,Figure2 (b),
have to be followed continuously problemsoccur Usually, the S/N ratio decreases
with increasingtraveltime. Eventsat small traveltimesof the simulatedZO section
might be disturbedby mute zones.Regionswith conflictingdips or wherescattering
prevails, interruptthe automaticpicking, seeFigure2 (b) in the vicinity of CMP no.
550. Thus,half-automatigicking is requestedh orderto overcometheseproblems.

A little erroris includedwhile picking the maximumamplitude. In the synthetic
andreal data-sethe actuallocal maximumcannotalways be picked becausef the
discretetime sampling. But the picked maximumis very closeto it, hence the error
is small. The traveltime that corresponds$o the maximumamplitudeof the wavelet
differs slightly from the traveltime that actually representshe spatiallocationof the
impedancecontrastin the time domain. To preventthoseerrors,onesuggestions to
pick the time samplewherethe wavelet startsto separatdrom the noisebut thatis
evenmoredifficult becaus®nehasto defineathresholdfor thenoise.

It is advantageouso pick asmucheventsaspossiblebecaus¢he moreeventsare
picked the moreinterfacescan be invertedand the more precisethe modelwill be.
Anotherreasoris thattheinversionalgorithmprovidesonly constanwelocitieswithin
the layersalongthe tracedrays. Hence,it is preferableto have more picked events
with smallertime intervalsin orderto constructa morecomple< model.

SMOOTHING BY MEANS OF STATISTICAL METHODS

The inversionalgorithmrequiressmoothCRS stackattributes. The deviation of the
anglea from traceto tracealonganeventis smalland,thus,thedataof theemepgence
anglesdo not requiremuchsmoothing.In contrastthe radiusof the NIP wavefront
Ry1p oftenvariesstronglyfrom traceto trace,seeFigure 3 (a). To performa more
stableinversion,thedatahave to be smoothed.

Thereareseveralfilters availablefor smoothingpurposesThe smoothings done
within a pre-definedvindow of length2m + 1. This yields a symmetricalwindow
aroundthe picked time samplethat canbe setindependentlyn time and/ortracedi-
rection.

Here,possibldfilter choicesare:

1. The arithmeticmean,z, is the normalisedsumof all values(z, ) within the
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pre-definedvindow. Here,r denotegheindividual valueswithin thewindow in
time directionand¢ is theindex for all valuesof thewindow in tracedirection.

. The mediansortsthe dataof the window in anincreasingorderandtakesthe

valuein themiddle of thesequence.

. A combinationof the arithmeticmeanandthe median,called'meandifference

cut', calculatesat first the arithmeticmean,z, for the entirewindow. Then,the

deviation of thevaluesfrom thearithmeticmeanis computedlf thedeviationis

greaterthanagivenpercentagethevalueis excludedfrom furthercalculations.
If dataremainin this interval, the arithmeticmeanis calculatedagain. In the

casethatno dataareleft in this interval, the medianis takenasoutput.

. The weightedarithmeticmean,zy, is alsoa sumover all values(z, ¢) of the

pre-definedvindow. Beforethevaluesaresummedup, they aremultiplied with
atriangularweightfunction.

Robust locally weightedregression
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Figure3: A real dataexamplethat hasbeensmoothedwith robustlocally weighted
regressionfa) shavstheoriginal R y;p datafor onepickedevent. (b) shavstheresult
of therobustlocally weightedregressiorfilter for smoothing.The parametersisedfor
thefilter were:f =0. 1, nst eps=2.

A specialffilter is therobustlocally weightedregressiorof (Cleveland,1979).The
first stepis to choosea weightfunctionwith thefollowing properties:

W(zx) > 0for |z| < 1,

W (z) is anon-increasindunctionfor z > 0, and

W(z) =0for|z| > 1.
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Examplesf suchaweightfunctionareaboxcar atriangleor thecosinefunction. The
secondstepis to fit a polynomialof 4t orderto the points(x;, y;) within thewindow

usingweightedleastsquaresvith weightswy(z;). ¢ = 1,...,n denotesll pointsof

oneeventwheren is themaximumnumberof pointsof thatpickedevent.k = 1,...,n

representshe kth weight function correspondindo theith point. This initial fit, g;,

is the locally weightedregression.Now, the residual(y; — ;) is calculatedio geta
new weightfunction, ¢;, thathaslarge weightsfor smallresidualsandsmallweights
for large residuals. Thefitted valuesare calculatedagainwith a new setof weights,
d;wg(x;), whicharemultiplied with the original data. Thelaststepis repeatedeveral
timesandtheresultis therobustlocally weightedregression Thenumberof iterations
is givenby the parametensteps. Thelengthof the smoothingwindow is obtainedby

r = fn, wherer is roundedo the nearestntegerneighbourand f is afactorbetween
zeroandone. If f is closeto zero,the window lengthfor smoothingis short. Thus,
the curve of fitted pointsis moreroughly If f getscloserto one, more pointsare
consideredor thefit. Thatleadsto asmootheicune. Thisfilter wasdesignedo gain

the bestfit for datafor whichy; = g(x;) + €;, whereg is asmoothfunctionande; is a

randomvariablewith meanzeroandconstanscale.

In contrastto the robust locally weightedregression,a spline approximation,a
splineinterpolation,or a local polynomialregressionshavs a basicproblem. They
cannotmemgethelocal partssuchthattheresultingcurve is smoothin first andsecond
order That meansthe endpointsand/ortheir first derivative from onelocal partto
the next mustbe continuous. To overcomethis problem,e.g., a global polynomial
regressioncould be computedor the whole reflectorwith a certainorder Choosing
thena smallorderyields a polynomialthatcannotfollow high frequeng fluctuations
andalargeordermightleadto a polynomialwith morefluctuationghandemanded.

Therobustlocally weightedregressions alsoa kind of a polynomialfitting pro-
cedure.Therethe problemof smoothnesss solved by improving the weight func-
tions.Hencetherobustlocally weightedregressiornis in favour, seeFigure3 (b).

REAL DATA EXAMPLE

Figure2 (b) shavs a smallsimulatedZO subsebf a realdata-setWe hadpickedten
eventsbetweerCMP numberl50and480of which we usedsevento generatehetwo
macro-\elocitymodelsin Figurel (a)and(b). This CMP window waschoserbecause
therewe wereableto pick continuouseventsfor timesbetween0.3and 3.2 seconds.
As mentionedbefore,someeventscould not be followed continuouslyto the left or
right becausescatteringprevails or anotherevent crosseghe picked one. We could
not pick continuouslyat smallertimesbecausegartsof the eventsweremuted. The
arrovs in Figure2 (a) and(b) indicatesomepicked eventsusedfor the inversion. At
latertimesin Figure2 (b), thenoiseis too strongto find morecontinuousvents.
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Both macro-\elocity modelsor smoothedversionsof them canbe usedfor mi-
gration. The velocity for the half-spacebeneaththe last interfacehasto be chosen
manually

CONCLUSIONS

To our knowledge,it is the first time that a data-drven modelis presentedvhich is

not a resultof aniterative improvementof aninitial model. The modelis calculated
directly from the pickeddataandthemodelindependen€R Sstackattributes.We also
presentec sophisticate@moothingalgorithm,therobustlocally weightedregression.
This algorithmis suitedbestto preparethe CRS stackattributesin orderto ensurea

stableinversion.
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