
Wave Inversion Technology, Report No. 3, pages 143-155

Three-Dimensional Dynamic Wavefield Properties

C. Vanelle and D. Gajewski1

keywords: ray propagator, paraxial rays, traveltimes, geometrical spreading,
amplitudes

ABSTRACT

Information about dynamic wavefield properties can be expressed in terms of the ray
propagator which depends on second order derivatives of traveltimes. Research con-
cerning this topic has already been carried out by various groups. It was, however,
restricted to surfaces either defined by reflectors or the ray centered coordinate sys-
tem. In this paper we present a technique that uses the three-dimensional cartesian
grid defined by traveltime data tables. It is particularly suited for pre-stack migration
applications since there the data is available in this format. A fully 3-D 6�6 ray prop-
agator matrix is introduced. It contains all information needed to compute the required
properties and can be determined from traveltimes only. Its relation to the commonly
used 4�4 ray propagator matrices is given. Applications shown to demonstrate the
versatility of the new method are traveltime interpolations and the computation of ge-
ometrical spreading.

INTRODUCTION

The foundation for a 3-D pre-stack migration of the Kirchhoff type is a summation
stack along diffraction surfaces. To accomplish this accurately and efficiently is still a
challenge. Proper migration weights have to be applied to achieve high accuracy. To
keep the computational costs within reasonable limits it is important to optimize the
migration aperture which depends on information about the Fresnel zones. To reach
both objectives requires knowledge about dynamic wavefield properties. Although a
number of extremely efficient tools for traveltime computation have been developed
in recent years (e.g., Ettrich and Gajewski (1996), Leidenfrost (1998)), fast algorithms
like FD techniques yield only kinematic but no dynamic informations. Publications
by Bortfeld (1989) and Hubral et al. (1992) make use of the relationship between the
curvature of a wavefront and the ray propagator matrix to determine dynamic wavefield
properties. Their approach is, however, confined to the reference surfaces they work
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on, e.g., the wavefront or reflector surfaces, whereas seismic traveltime data is most
likely to be sampled or computed on rectangular grids that do not coincide with these
surfaces. Therefore, the application of their algorithms is rather inconvenient. In the
following we will show how a newly introduced 6�6 ray propagator matrix can be
applied to circumvent the restriction to surfaces and thus make it possible to work
directly on the (cartesian) traveltime grids.

METHOD

Traveltime Expansions

We begin with the assumption of a smooth traveltime field. In real life this is justified
by the Earth's low pass filter behaviour. From the computational point of view it means
that velocity variations must not take place on a smaller scale than the signal's wave-
length. This condition corresponds to the applicability of the ray method. With this

Figure 1: Nomenclature used: we
denote the deviation in source po-
sition by ~̂s = ~̂s 0 � ~̂s0 and in geo-
phone position by ~̂g = ~̂g 0� ~̂g0. The
hat on top of a vector distinguishes
between a two-dimensional vector
~v and a three-dimensional vector ~̂v.
The same notation is applied to ma-
trices.
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requirement fulfilled, we can approximate the traveltime difference � (~̂s 0; ~̂g 0) between
a point ~̂s 0 and a point ~̂g 0, see Figure 1, by a Taylor expansion. For small ~̂s and ~̂g we
get the following expression for � (~̂s 0; ~̂g 0):

� (~̂s 0; ~̂g 0) = �0 � ~̂p ~̂s+ ~̂q ~̂g � 1

2
~̂s T Ŝ ~̂s+ 1

2
~̂g T Ĝ ~̂g � ~̂s TN̂ ~̂g + O(3): (1)

The first order derivatives�~̂p and ~̂q are the slowness vectors at source and receiver and
�0 is the traveltime difference between two points ~̂s0 and ~̂g0. The coefficient matrices
Ŝ , Ĝ and N̂ are

Ŝij = � @2�

@si @sj
; Ĝij = @2�

@gi @gj
; N̂ij = � @2�

@si @gj
(2)

The signs in (1) take into account that � (~̂s 0; ~̂g 0) is the traveltime difference between
the two points. We make a further approximation: as seismic traveltimes are better



145

approximated by hyperbolae than by parabolae (e.g., Ursin (1982)) we mold (1) into a
hyperbolic form as shown by Schleicher et al. (1993). We square (1) and neglect terms
of higher order than two, resulting in

� 2(~̂s 0; ~̂g 0) = (�0 � ~̂p ~̂s+ ~̂q ~̂g)2 + �0(�~̂s T Ŝ ~̂s+ ~̂g T Ĝ ~̂g � 2 ~̂s TN̂ ~̂g) + O(3): (3)

The ability to approximate traveltimes by (1) or (3) can be inverted: it also means
that if traveltime information is available for various source and receiver combinations
as, e.g., from multi-coverage experiments, then equations (1) and (3) can be used for
determining the coefficients by solving for them. This was initially suggested by Bort-
feld (1989) and first explained by Gajewski (1998). It not only offers the possibility to
compute traveltimes for intermediate source and receiver positions but can also lead to
an immense saving in memory: the valid vicinity of the approximations is not necces-
sarily restricted to adjoining gridpoints of a discretized subsurface model. Therefore
we can revert to storing only a fraction of the traveltime information on a coarse grid
and reconstruct the remaining data by interpolation using (1) or (3). The degree of
redundancy in the initial traveltime information depends on the model under consid-
eration. To give an example: if we use only every tenth gridpoint in three dimensions
we need a factor 103 less in storage capacity! Please note also that the method is not
restricted to cubical grids.

Geometrical Spreading

We will now compare equation (1) to the paraxial traveltime equation by Cervený
(1987):

� (~̂sr
0; ~̂gr

0) = �0 � ~̂pr ~̂sr + ~̂qr ~̂gr �
1

2
~̂sr

TM̂S ~̂sr +
1

2
~̂gr

TM̂G ~̂gr � ~sr
TQ�1

2 ~gr: (4)

The index r denotes ray centered coordinates. Note that there are no third components
in the last term. The transformation between the ray centered and the cartesian system
is a rotation employing two angles # and '. The matricesM̂ and Q2 used by Cervený
and the transformation between ray centered and cartesian system are explained in the
appendix. Cervený (1987) shows that the modulus of the relative geometrical spread-
ing L depends only on the determinant of Q2. With vs being the velocity at the source
it reads

jLj = 1

vs

q
jQ2j: (5)

In the appendix we show that there are only four independant components to matrix
N̂ and how N̂ relates to Q�1

2 . From that we can compute jQ2j by the determinant of
any 2�2 submatrix of N̂ and the appropriate angles, e.g., for the upper left submatrix
of N̂ we find

jLj = 1

vs

vuut cos #s cos #g

jNxxNyy �NxyNyxj : (6)
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Hubral et al. (1992) do a similar expansion as (1) into an anterior and a posterior
surface using ~s, ~g instead of ~̂s, ~̂g. If their surfaces equal the z-plane we use, their
result corresponds to equation (6). In this case the # are the incidence respectively
emergence angles.

APPLICATIONS

Hyperbolic vs. Parabolic Expansion
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Figure 2: Comparison of parabolic (left) and hyperbolic (right) expansion for a con-
stant velocity model. For both traveltimes (top) and geometrical spreading (bottom)
the hyperbolic variant is far superior.

Knowing that diffraction traveltimes can be approximated by hyperbolae rather
than by parabolae we expected better results for the hyperbolic variant. This was
confirmed by two-dimensional examples in traveltime interpolation and computation
of geometrical spreading. We used a constant velocity model with 100m gridspacing
to compute the coefficients of (1) and (3). For the traveltime interpolation onto the
fine grid with 10m spacing (1) respectively (3) were applied. For the computation of
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geometrical spreading (6) was used on the coarse grid. Bilinear interpolation was then
carried out for the intermediate points on the fine grid. The resulting errors are shown
in Figure 2. For the traveltimes the hyperbolic variant has an average error within
machine precision. i.e., 10�5% (maximum 0.01%) whereas the parabolic variant's
average error is 0.01% (3.1% max.). Note that a bilinear traveltime interpolation would
yield 0.6% (>8% max.). For the geometrical spreading we get an average error of
0.03% (2.3% max.) for the hyperbolic and 1.0% (34.3% max.) for the parabolic
variant. Due to these results we will not use the parabolic approximation any further.

Traveltime Interpolation
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Figure 3: Relative traveltime errors and isochrones for the Marmousi model. Some
errors occur in the vicinity of edges in the wavefront, see the area indicated with a
.
The reason is that a Taylor expansion is not valid there because the traveltimes are
not smooth. It is, however, possible to locate these regions and perform a single-sided
extrapolation. This was done for the triplication starting at b
 for all later times.

We give two more examples for traveltime interpolation. The first is a two di-
mensional version of the Marmousi model described by Versteeg and Grau (1991)
with 125m (coarse) grid spacing in either direction. As traveltimes were computed by
wave front construction the model was 100 fold smoothed. Interpolation onto a 12.5m



148

0

100

0 100

0

0.02

0.04

0.06

0.08

0.10

rel. error [%]

0.2

0.4

0.6D
ep

th
 [k

m
]

0.20.40.60.8
X-Offset [km]

0.2
0.4

0.6
0.8

Y-O
ffs

et
 [k

m
]

Traveltime errors

Figure 4: Relative traveltime errors for a constant velocity gradient model. The area
on top of the cube has indeed as low an error as the white colour indicates.

spaced fine grid yields a median error of only 0.02%. A second example is a three di-
mensional constant velocity gradient model with 100m coarse grid spacing and a 10m
fine grid. Here we find the median error to be 0.002%.

Geometrical Spreading

We show results for the same two models as in the traveltime section. Bilinear inter-
polation was applied for the computation onto the fine grid. For the Marmousi model
we used a 62.5m coarse and a 12.5m fine grid. The median error is 1.8%. The domi-
nating errors occur in the vicinity of edges in the wavefront (Figure 5) where different
phases get mixed if we use first arrivals only. Employing later arrivals and separately
interpolating for both branches of the traveltime curve would reduce the error in these
regions. The second example is again a three-dimensional constant velocity gradient
model. The same grid spacings as for the traveltimes are used. Figure 6 finds the
median error to be smaller than 0.3%. Generally the error increases for higher off-
sets and for too small coarse grid spacing as the moveout gets smaller and traveltime
inaccuracies have a higher impact.
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Figure 5: Relative errors in geometrical spreading and isochrones for the Marmousi
model. Again, as for the traveltimes, the interpolation fails in regions where triplica-
tions occur. Due to the bilinear interpolation the effect has a stronger impact here.

CONCLUSIONS AND DISCUSSION

A new technique for the determination of a three-dimensional ray propagator matrix
T̂ was presented. The theory links this matrix to the established propagator matrices
� (Cervený's formulation) and T (by Bortfeld and Hubral). Two applications were
shown to be very effective and accurate. Hyperbolic interpolation of traveltimes leads
to immense savings in storage at no significant loss in accuracy. Geometrical spreading
can be computed from traveltimes only. These results make further applications look
highly promising. There is only a small step to be taken from geometrical spreading
to the computation of migration weights. The determination of Fresnel zones is also
possible with the ray propagator. Thus we have the means to provide an efficient
algorithm for true amplitude migration with no significant additional effort since the
required traveltime tables are needed for Kirchhoff-type pre-stack migration. This
algorithm will be memory efficient since every computation can be carried out with
coarse grid traveltime data only and time efficient as we can optimize the migration
aperture by knowledge about the Fresnel zones.
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Figure 6: Relative errors in geometrical spreading for a constant velocity gradient
model. Only near the source we have higher errors, see a
. The reason is that the
radius of the wavefront curvature is small compared to the coarse grid spacing: bilinear
interpolation does not fit well. This is not problematic since we are not interested in
the source region.
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APPENDIX A

We introduce a matrix T̂ for describing the propagation of a ray in a three dimen-
sional medium in cartesian coordinates. A similar propagator matrix T was introduced
by Bortfeld (1989) for projections of the slownesses and coordinates onto reference
surfaces. Our propagator matrix however is not restricted to surfaces but uses third
components as well. We use Hamiltons equation (Bortfeld (1989))

d� = ~̂q 0d~̂g � ~̂p 0d~̂s (A-1)
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and assume a linear relationship between the source and receiver variables as Hubral
et al. (1992) do, but for three dimensions:

~̂g = Â ~̂s + B̂ ~̂p 0 � ~̂p

~̂q 0 � ~̂q = Ĉ ~̂s + D̂ ~̂p 0 � ~̂p (A-2)

or rewritten as 
~̂g

~̂q 0 � ~̂q

!
= T̂

 
~̂s

~̂p 0 � ~̂p

!
; with T̂ =

 
Â B̂
Ĉ D̂

!
: (A-3)

We solve (A-2) for ~̂q 0 and ~̂p 0 and insert the result into (A-1), yielding

d� = (~̂q + D̂ B̂�1~̂g � D̂ B̂�1Â ~̂s+ Ĉ ~̂s) d~̂g + (�~̂p� B̂�1~̂g + B̂�1Â ~̂s) d~̂s: (A-4)

This expression can only be integrated if d� is a total differential. This condition leads
to the following relationships, cf. Hubral et al. (1992):

ÂT D̂ � ĈT B̂ = 1̂ D̂T B̂ = B̂T D̂ ÂT Ĉ = ĈT Â; (A-5)

where 1̂ is the identity matrix. The resulting traveltime difference is

� (~̂s 0; ~̂g 0) = �0 � ~̂p ~̂s+ ~̂q ~̂g � 1

2
~̂s T D̂ B̂�1 ~̂s+ 1

2
~̂g T B̂�1Â ~̂g � ~̂s T B̂�1 ~̂g (A-6)

where �0 is the traveltime from ~̂s0 to ~̂g0. If we compare equations (1) and (A-6) and
use (A-5) we find that

Ŝ = ŜT = �B̂�1Â Ĝ = ĜT = D̂ B̂�1 N̂ = B̂�1 6= N̂ T (A-7)

and this results in the ingredients of T̂ :

T̂ =

0@ �N̂�1Ŝ N̂�1

�N̂ T � Ĝ N̂�1Ŝ Ĝ N̂�1

1A : (A-8)

APPENDIX B

Cervený (1987) introduces the ray propagator matrix � with the components

� =

 
Q1 Q2

P1 P2

!
(B-1)

where the Qi, Pi are 2�2 matrices. Equation (4) contains them in the following form:

M̂s =

0BB@ �Q�1
2 Q1

� 1
v2
s

@vs
@srx

� 1
v2s

@vs
@sry

� 1
v2s

@vs
@srx

� 1
v2s

@vs
@sry

� 1
v2s

@vs
@srz

1CCA (B-2)
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and

M̂g =

0BBB@ P2Q�1
2

� 1
v2g

@vg
@grx

� 1
v2g

@vg
@gry

� 1
v2
g

@vg
@grx

� 1
v2
g

@vg
@gry

� 1
v2
g

@vg
@grz

1CCCA : (B-3)

The remaining matrix P1 is connected with P2; Q1; Q2 by symplecticity relations
similar to (A-5), cf. Cervený (1987). Important properties like geometrical spreading
can be computed from the ray propagator in ray centered coordinates. We will now
show that with a transformation from ray centered to our cartesian coordinates we can
derive similar relationships for our cartesian propagator. The difference between (4)
and (1) lies in the coordinate systems. Both use two cartesian systems centered in
~̂s0 = ~̂sr0 (~̂g0 = ~̂gr0). The transformation between them is given by a rotation matrix
R̂s (R̂g) such that

~̂s = R̂s~̂sr (~̂g = R̂g~̂gr): (B-4)

Our choice of R̂s (R̂g) is that the ray centered system is first rotated by an angle #s
(#g) until the 3-components coincide. Then a second rotation around x3 by angle 's
('g) adjusts the remaining 1- and 2-components. The matrix R̂s looks as follows:

R̂s =

0B@ cos#s cos's sin's � sin#s cos's
� cos #s sin's cos's sin#s cos's

sin#s 0 cos#s

1CA : (B-5)

The angles can be easily obtained from the cartesian slowness vector

~̂p = (px; py; pz) = ~̂prR̂T
S (B-6)

and ~̂pr = (0; 0; 1=v2s ). The matrices Ŝ (Ĝ) transform

M̂s = R̂T
s ŜR̂s (M̂g = R̂T

g ĜR̂g): (B-7)

For the mixed derivative matrix N̂ we find that there are only four independant com-
ponents as, e.g.,

Nzx =
@pz

@xg
=

@

@xg

s
1

v2s
� p2x � p2y = � 1

pz

 
px
@px

@xg
+ py

@py

@xg

!
= tan #s(Nxx cos's �Nyx sin's): (B-8)

Expressions for the other components can be found in a similar way. If we assume a
matrix Q̂ to be a three-dimensional expansion of Q�1

2 with

Q̂ =

0B@ Q�1
2

0

0

0 0 0

1CA (B-9)
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the transformation
Q̂ = R̂T

s N̂ R̂g (B-10)

yields indeed disappearing 3-components of Q̂ if we use (B-8) etc., thus

~̂s T N̂ ~̂g = ~̂sr
T Q̂ ~̂gr = ~sr

TQ�1
2 ~gr: (B-11)

This result means that Q�1
2 can be expressed by any 2�2 submatrix of N̂ and the

corresponding rotation angles.


