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ABSTRACT

The Kirchhoff-Helmholtz integral is a widely used tool for modeling the reflected re-
sponse from an acoustic or elastic interface due to a given incident field. This integral
is based on the idea that the reflection wavefield at the receiver is a superposition of the
wave fields produced by point diffractors distributed at the reflecting interface. These
diffractors are the so called Huygens secondary sources that are excited by the inci-
dent field. For a dense distribution of source-receiver pairs on a fixed measurement
surface, the Kirchhoff-Helmholtz modeling integral provides, for a given interface,
the corresponding reflection response as an amplitude distribution along a traveltime
surface. The proposed asymptotic inverse Kirchhoff-Helmholtz integral consists of
an integral along this reflection traveltime surface. For a point on the reflector, it
sums the reflected-wave contributions attached to the respective reflection-traveltime
surface associated with the related source-receiver pair. The new inverse integral re-
constructs the Huygens sources along the reflector, thus providing their positions and
amplitudes. In this way, a kinematic (positioning) and dynamic (amplitude) inversion
becomes possible by means of an integral operation, which is most naturally related
to its counterpart Kirchhoff-Helmholtz integral.

INTRODUCTION

The wavefield originating from a point source and primarily reflected from a smooth
reflector overlain by a smooth inhomogeneous acoustic medium can be described by
the Kirchhoff integral in the so-called single-scattering, high-frequency approximation
(see, e.g.Frazer and Sen (1985)). The resulting Kirchhoff-Helmholtz integral describes
then the reflected elementary waves as a superposition of Huygens secondary point
sources distributed along the reflector.

The Kirchhoff-Helmholtz integral is largely used to accurately model primary re-
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flections in smoth layered models bounded by smooth interfaces (reflectors). A natural
question that arises is whether a transformation exists that performs the opposite task of
the Kirchhoff-Helmholtz integral. In other words, this inverse would have tokinemati-
cally and dynamically reconstructthe reflector. This would have to involve a weighted
superposition of the observed elementary wave along the reflection traveltime surface
of the searched-for reflector. To kinematically and dynamically reconstruct the reflec-
tor means to asymptotically recover the reflector location together with the plane-wave
reflection coefficient in each point of the reflector. In the seismic literature, this is com-
monly called thetrue amplitudeat all reflector points.

The depth migration method traditionally accepted as an inverse to the Kirchhoff-
Helmholtz integral is Kirchhoff depth migration (Schneider, 1978). This migration is
realized upon summing up contributions of the reflection data along auxiliary diffrac-
tion surfaces constructed on an a priori given reference model.

We see that the Kirchhoff-Helmholtz integral, a summation operator along a given
reflector, lacks a structurely similar (asymptotic) inverse operation. This should have
the form of a summation operation along the reflection traveltime corresponding the
reflector, assuming, of course, the same configuration of source-receiver pairs. This is
being set up in this paper by exploring the dual properties between the given reflector
and its corresponding traveltime surface.

THE INVERSE KIRCHHOFF-HELMHOLTZ INTEGRAL

To set up an analogous integral to the forward Kirchhoff-Helmholtz integral (Frazer
and Sen, 1985; Tygel et al., 1994) that achieves its inverse task, namely to reconstruct
the singular function of the reflector� from its image at�, our strategy will be to
substitute in the Kirchhff-Helmholtz (KH) integral all points and surfaces by their
respective duals (Tygel et al., 1999). This is geometrically described with the help of
Figure 1.

The new KH inverse will consist of an integration along the reflection-traveltime
surface�, as opposed to its KH forward counterpart that involves an integration along
the reflector�. In analogy with the preceding construction, we consider the output
of the integration at a certain, fixed coordinatex = ~xR, which determines a point
MR = M�(~xR) on �. By means of a reflection ray, it also determines a dual point
NR = N�(~xR) = N�(~�R) on �. Here, the value of the parameter~�R is given by
~�R = ~�S(~xR). The isochron ofNR will be tangent to� atMR =M�(~�R).

For each pointN� on �, the new integrand should contribute to the output result
I(~xR; z) at a single pointMI , namely the intersection between the isochron ofN�,
z = Z(x; N�), and the vertical line at~xR. In symbols,MI = (~xR;Z(~xR; N�)).

The pointMI will fall on �, i.e., it will coincide withMR, whenN� coincides with
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Figure 1: The inverse Kirchhoff-Helmholtz integral understood geometrically. For
each pointN� on�, the integration contributes to the reflector depth image computed
for ~xR at the corresponding pointMI = (~xR;Z(~xR; N�)). For details see text.
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NR, the dual point ofMR. At MR, the isochronz = Z(x; NR) is tangent to�. Due to
our assumptions of a smooth reflector and uniqueness of dual points, we have again the
situation of an isolated stationary point atMR, which means that the main contribution
of the new integral will be observed atMR. As before, the reflector� (dashed line
in Figure 1) is a priori unknown. It will become known only by a repeated execution
of the above process for allx in E. In this way, we have geometrically constructed a
kinematic transformation of the reflection-traveltime function� into the reflector�.

In the same way as the amplitude of the function to be integrated in the forward
Kirchhoff-Helmholtz integral is that of the singular functionI�(x; z) of the reflector,
multiplied with an appropriate weight function, it is most natural to set the amplitude
of the integrand in the inverse integral to be that of the singular functionK�(~�; t) of
the reflection-traveltime surface�, multiplied with a corresponding, yet unspecified
weight function. Analogously to the weight functionWK(~�;M�) in the forward KH
integral, the new weight function,WI(x; N�), will be included into the inverse integral
in order to assure that also this inverse transformation can be performed in a dynami-
cally correct way, i.e., to correctly reconstruct the varying reflection coefficient along
the reflector�. Similarly to the forward KH integral, the correct pulse shape will be
ensured by the use of a derivative of the involved�-pulse in the direction normal to�.

Translating the above arguments into mathematical terms and in full correspon-
dence to the forward KH integral, we can now set up the proposed inverse KH integral
as

I(x; z) = � 1

4�

Z
d� WI(x; N�) A(N�) @��(z �Z(x; N�)) : (1)

In this formula,@� denotes, correspondingly to the normal derivative@� in the forward
KH integral, the partial derivative in the direction of the normal~� to the traveltime
surface� at the generic pointN� = (~�;�(~�)) that describes the integral. The point
N�, by means of the configuration parameter~�, automatically determines the source-
receiver pair(S;G), whereS = S(~�) andG = G(~�). As previously, let us denote
byMR the (unique) specular reflection point on the reflector pertaining to the source-
receiver pair(S;G) defined by~�. From a stationary-phase analysis, it follows that the
weight function can be selected as

WI(x; N�) =
hB(~�;MI) v

3(MI) cos2 �(MI)

cos2 �(MI )
LS(MI)LG(MI) : (2)

Here,MI is the point(x; z = Z(x; N�)), where the isochronz = Z(x; N�) of N� cuts
the vertical line atMR (see Figure 1). Also,v(MI) is the medium velocity atMI and
LS(MI) andLG(MI) are the point-source geometrical-spreading factors along the ray
segmentsSMI andMIG, respectively. Moreover,�(MI) represents the angle the nor-
mal to� atN� makes with the verticalt-axis), and�(MI) denotes the incidence angle
that the incoming raySMI makes with the isochron normal atMI (see Figure 1). Fi-
nally, hB(~�;MI) is the modulus of the Beylkin determinant (Beylkin, 1985; Bleistein,
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1987),

hB(~�;MI) =

2664
rT (~�;MI)

@�1rT (~�;MI)

@�2rT (~�;MI)

3775 ; (3)

wherer = (@x1; @x2; @z) is the spatial gradient operator.

As shown by Tygel et al. (1999) the forward and inverse KH integrals can be
asymptotically evaluated by the time-domain version of the standard stationary-phase
method, as described, e.g., in Bleistein (1984). The KH forward integral can be ap-
proximated, for time valuest � �(~�) as

K(~�; t) � K�(~�; t) = A(N�) �(t� �(~�)) ; (4)

namely, the true-amplitude singular function of the traveltime surface�.

Correspondingly, the new KH inverse integral 1 can be asymptotically approxi-
mated for spatial valuesz � �(x) as

I(x; z) � I�(x; z) = R(M�) �(z ��(x)) ; (5)

i.e., the true-amplitude singular function of the reflector�.

This means that integral 1 is the (asymptotic) inverse to the forward KH integral. In
other words, the forward and inverse KH integrals form an asymptotic transform pair
between the depth-domain true-amplitude singular functionI�(x; z) of the reflector
� and its corresponding time-domain true-amplitude singular functionK�(~�; t) of the
traveltime surface�.

A SIMPLE NUMERICAL EXAMPLE

To verify the validity of the inverse Kirchhoff-Helmholtz integral 1, we have designed
the following simple numerical experiment. A seismic common-offset experiment
with a half-offset ofh =500 m was simulated above the earth model depicted in Fig-
ure 2. It consists of two homogeneous acoustic layers with constant velocities of 4 km/s
and 4.5 km/s, respectively, separated by a smooth interface in the form of a dome struc-
ture. The terminology “common-offset experiment” means that all source-receiver
pairs involved are separated by the same fixed offset of2h = 1000 m. More specif-
ically, the location of each source and each receiver can be expressed asxS = � � h

andxG = � + h, where parameter� is the midpoint coordinate, i.e.,� = (xS + xG)=2.

Figure 3a shows the common-offset data as modeled by the forward KH integral.
For an easier analysis, we have convolved the results with a Ricker wavelet of unit
peak amplitude and a duration of 64 ms. Also indicated in Figure 3a is the reflection
traveltime curve as the locus of the peak amplitudes of the time-symmetric Ricker
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Figure 2: Model for the numerical example.

wavelet used in the numerical modeling. Along this identified traveltime curve, we
now perform the new inverse Kirchhoff-Helmholtz integral 1. The result is shown
in Figure 3b. The inversion results show that the obtained wavelets align perfectly
along the reflector that is indicated by a continuous line. This confirms that integral 1
performs the inversion task in a kinematically correct way (i.e., it correctly positions
the reflector in depth).

To check on the dynamics, we determine the obtained peak amplitudes and com-
pare them to the correct reflection coefficient (see Figure 4a). We observe an almost
perfect coincidence between the inverted amplitudes (green line) and the theoretical
curve (black line) within the center region of the dome structure. On both flanks, a
slightly larger error can be observed. This is due to the reduced illumination of this
part of the reflector, caused by the employed measurement configuration. For compar-
ison, also included are the amplitudes as recovered from conventional true-amplitude
Kirchhoff migration (blue line). In Figure 4b, this observation is quantified by the
relative error of the observed amplitudes. In the central region, the error of Kirchhoff
inversion does not exceed half a percent. In the less well-illuminated parts of the re-
flector, we still have errors less than four percent, an also good amplitude recovery
and still better than that of Kirchhoff migration. Note the smaller boundary zone of
Kirchhoff inversion with respect to Kirchhoff migration. This indicates that Kirchhoff
inversion will achieve a better horizontal resolution. These results (and other numeri-
cal experiments not shown in this paper) confirm our claim that integral 1 constitutes
indeed an asymptotic inverse to the well-known forward Kirchhoff-Helmholtz integral.

CONCLUSIONS

We have presented an analogous (asymptotic) inverse to the well-known forward Kirchhoff-
Helmholtz (KH) integral. Just as the forward KH integral can be conceived as a su-
perposition of the elementary responses of all Huygens secondary sources along the
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Figure 3: (a) Synthetic data as modeled by the forward Kirchhoff-Helmholtz integral.
(b) Inverted data as obtained by the inverse Kirchhoff-Helmholtz integral.
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Figure 4: (a) Picked peak amplitude in the inverted section of Figure 3b (green line), as
compared with the theoretical reflection coefficient (black line) and the corresponding
amplitudes from standard true-amplitude Kirchhoff migration. (b) Relative error of the
amplitudes of part (a).



15

reflector, we can conceive its inverse as a superposition of “elementary reflection im-
ages” along the reflection-traveltime surface. The elementary Huygens sources along
the reflector are then recovered in position and strength.

For a given distribution of source-receiver pairs (the measurement configuration)
that provides the “illumination” of the reflector, we have introduced the concepts of
the true-amplitude singular functions of the reflector and its corresponding reflection-
traveltime surface. These are nothing else than�-functions localized on the two sur-
faces multiplied by specular reflection coefficients (at the reflector) and zero-order ray
responses (at the reflection-traveltime surface). The new KH transform pair provides
an (asymptotic) link between the true-amplitude singular functions of the reflector and
its reflection-traveltime surface. The new inverse KH integral was constructed using
the fundamental dual properties that relate primary-reflection surfaces of the time-
domain data space and their corresponding depth-domain reflectors in model space.
By a simple numerical example, we have confirmed that the new inverse Kirchhoff-
Helmholtz integral indeed recovers the reflection coefficients along the reflecting in-
terface as claimed theoretically.

The new inverse integral also fills a gap which originates from the observation that
the conventional Kirchhoff migration integral (Schneider, 1978), well known in the
seismic literature and frequently used to solve the inverse problem, is not an inverse
but the adjoint operation to the forward KH integral (Tarantola, 1984). In fact, the
structurely correct inverse to Kirchhoff migration has also been recently provided un-
der the name of the Kirchhoff demigration integral (Hubral et al., 1996; Tygel et al.,
1996).

The proposed inverse KH integral enables the design of a new seismic migration
technique that would deserve the name Kirchhoff migration much more than what
is up to now associated with this name. Note, however, that conventional Kirchhoff
migration has done an excellent job in practice. Whether the new inverse Kirchhoff-
Helmholtz integral can be employed with comparable success in practical seismic in-
verse problems remains a topic of future research.
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