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ABSTRACT

The Kirchhoff-Helmholtz integral is a powerful tool to model the scattered wavefield
from a smooth interface in acoustic or isotropic elastic media due to a given incident
wavefield and observation points sufficiently far away from the interface. This integral
makes use of the Kirchhoff approximation of the unknown scattered wavefield and its
normal derivative at the interface in terms of the corresponding quantities that refer to
the known incident field. An atractive property of the Kirchhoff-Helmholtz integral is
that its asymptotic evaluation recovers the zero-order ray theory approximation of the
reflected wavefield at all observation points where that theory is valid. Here, we ex-
tend the Kirchhoff-Helmholtz modeling integral to general anisotropic elastic media.
It uses the natural extension of the Kirchhoff approximation of the scattered wave-
field and its normal derivative for that media. The anisotropic Kirchhoff-Helmholtz
integral also asymptotically provides the zero-order ray theory approximation of the
reflected response from the interface. In connection with the asymptotic evaluation of
the Kirchhoff-Helmholtz integral, we also derive an extension to anisotropic media of
a useful decomposition formula of the geometrical spreading of a primary reflection
ray.

INTRODUCTION

The field scattered from a smooth interface can be represented by an integral over
the interface. Both the field and its normal derivative at the interface appear in the
integrand. Fundamental representations for acoustic, isotropic elastic, and anisotropic
elastic cases can be found in the literature (see, e.g., Aki and Richards, 1980; Bleistein,
1984). These representations can be recast as modeling formulas by exploiting the
Kirchhoff approximation. This approximation expresses the (unknown) scattered field
and its normal derivative in terms of corresponding (known) quantities of the incident
field. For example, see Bleistein (1984) for the acoustic case and Frazer and Sen (1985)
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for the isotropic elastic case. The resulting modeling integral is called the Kirchhoff-
Helmholtz integral. A fundamental feature of this integral is that the appication of the
stationary-phase method yields zero-order ray theory.

In this paper, we derive the extension of the Kirchhoff-Helmholtz integral to
anisotropic elastic media. The Kirchhoff approximation for this case follows along the
same lines as the earlier derivations. For this case, the application of the stationary-
phase method to compare to ray theory is not nearly as straightforward as in the previ-
ous cases. This is largely a consequence of the fact that the group and phase velocity
vectors generally separate in anisotropic media.

The stationary-phase formula requires the evaluation of the determinant of the
matrix of second derivatives of the traveltime function. The challenge here is to
express this determinant in terms of geometrical spreading factors that character-
ize the ray-theoretic solution. This leads to a decomposition of the geometric-
spreading of a primary-reflection ray as a product of three factors: one is the point-
source geometrical-spreading factor of the incidence ray; another is the point-source
geometrical-spreading factor of the reflected ray; the last is the so-called Fresnel
geometrical-spreading factor that accounts for the influence of the interface to the over-
all spreading. Such a decomposition already exists for the acoustic and the isotropic
elastic cases (Hubral et al., 1992; Tygel et al., 1994; Cervený, 1995). Here it is ex-
tended to anisotropic elastic media. The result confirms that the Kirchhoff-Helmholtz
integral has zero-order ray theory as its leading order approximation.

We first derive the anisotropic Kirchhoff-Helmholtz integral from basic principles.
We then compute its asymptotic evaluation using the stationary-phase method and state
the geometrical-spreading decomposition formula.

THE KIRCHHOFF-HELMHOLTZ INTEGRAL

In the frequency domain, wave propagation in an inhomogeneous anisotropic elastic
solid, in the absence of sources, is governed by the elastic Helmholtz equation (Aki
and Richards, 1980)

� !2�ui � (cijkluk;l);j = 0 ; (1)

where ui = ui(x; !) is the i-th component of the displacement vector u(x), � = �(x)

is the density and cijkl = cijkl(x) are the elastic parameters of the medium at the point
x = (x1; x2; x3). Also, ! is the temporal frequency. The elastic parameters satisfy
the symmetry relations cijkl = cjikl = cijlk = cklij . In equation (1) the notation \; j”
stands for @=@xj. Also, a repeated index implies summation with respect to this index.

The Green's function, g in(x; !;xs), satisfies the equation

� !2�gin � (cijklgkn;l);j = �in�(x� xs) : (2)
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It also satisfies the reciprocity relation (Aki and Richards, 1980, equation (2.39))

gij(x; !;x
s) = gji(x

s; !;x) : (3)

We shall use the geometric ray approximation (GRA) to obtain the approximate
Green's function. Using the results in Cervený (1995), we have for a specific ray
connecting a source point xs to a scattering point x, the GRA Green's function

gij(x; !;x
s) = hsi (x)

a(x;xs) ei!T (x;x
s)

[�(x)vs(x)�(xs)v(xs)]1=2
hj(x

s) ; (4)

where h(xs) and hs(x) are the unit polarization vectors, �(xs) and �(x) are the den-
sities and v(xs) and vs(x) the phase velocities in the ray direction at the source xs and
at the point x, respectively. Moreover, T (x;xs) is the traveltime along the ray from x

to xs and

a(x;xs) =
e�i

�

2
sgn(!)�(x;xs)

4�jdetQ2(x;x
s)j1=2 (5)

is a complex amplitude function taking into account possible caustics and phase-shift
at the source. In this expression, jdetQ2(x;x

s)j1=2 denotes the relative geometric
spreading factor and �(x;xs) is the KMAH index for the ray that connects the source
x
s to the point x.

We remark that our notation for the phase velocities vs(x) and v(xs) require some
explanation. These are both velocities along the specific ray that connects xs to x. Due
to anisotropy, these velocities depend on the ray direction, as well as position. When
we check reciprocity and interchange x and xs, we must also shift the superscript s. In
an implicit way, this reflects the fact that these velocities are indepent of the direction
of traversal of the ray. Our notation for the polarization vectors hsi (x) and hi(x

s)

follows the same pattern. As a consequence, the reciprocity relation (3) also holds for
the GRA Green's function (4).

We shall approximate the spatial derivatives by their leading-order terms in powers
of !, namely

gij;k(x; !;x
s) � i! T;k(x;x

s) gij(x; !;x
s)

= i! pskgij(x; !;x
s) (6)

where psk = psk(x) = T;k(x;x
s) is the kth component of the slowness vector ps(x) at

the point x (for the ray from the source).

We shall consider an incident wavefield, uinci (x; !), that is being reflected from a
surface � and recorded at the point xr, as shown in Figure 1. The reflected wavefield at
x
r, urefl

i (xr; !), can be expressed as a surface integral involving the displacement field
urefl
i (x; !) and its partial derivatives urefl

k;l (x; !) at the surface � by using a representa-
tion theorem that is given in Aki and Richards (1980), equation (2.41). In the absence
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of body forces, and with a Green's function that satisfies the reciprocity relation (3),
this representation is

urefl
m (xr; !) =

Z
�

�
gmi(x

r; !;x) cijkl(x)u
refl
k;l (x; !)

� gmk;l(x
r; !;x) cijkl(x)u

refl
i (x; !)

�
nj d� : (7)

To transform the above representation integral into a modeling formula, we need to
replace the unknown wavefields urefl

i (x; !) and urefl
i;j (x; !) by suitable known approxi-

mations of those wavefields. We assume that the incident wavefield, at each point of
the interface �, is given in the GRA form

uinci (x; !) = hinci (x)Ainc(x) exp[i! T inc(x)] ; (8)

Here, hinci (x), Ainc(x) and T inc(x) are the polarization vector, the amplitude and the
traveltime, respectively, of a specific wave mode selection of the incidence field. Of
course, the complete GRA description of that wavefield requires the consideration of
all relevant wave modes for the modeling problem under consideration. All those
wave modes have the same form of equation (8). By the linearity of the integral rep-
resentation, the total response is obtained by simple superposition. It suffices, thus, to
consider just one incident wave mode of the form (8).

Generalizing Bleistein's (1984) formulas for acoustic media and those of Frazer
and Sen (1985) for the elastic media, we propose to replace urefl

i (x; !) in the
anisotropic Kirchhoff approximation by

urefl
i (x; !) � h

spec
i (x)R(x;pinc)Ainc(x) exp[i! T inc(x)] ; (9)

Here, hspec
i (x) is the polarization vector corresponding to a specular reflected wave

of proper mode at the point x on �, due to the incident wave and R(x;pinc) is the
plane-wave reflection coefficient (normalized with respect to displacement amplitude)
for our choice of incoming and outgoing type of wave. All other factors are as defined
in connection with equation (4). As above, we considered just one wave mode of the
reflected field and rely on linearity to allow us to construct the total reflected field as a
simple sum.

Note that a corresponding approximation has been mentioned by de Hoop and
Bleistein (1997). In this paper, we complete the details of their observation and demon-
strate that it yields the leading-order anisotropic ray solution for the reflected wave
after the application of the stationary-phase method.

The anisotropic Kirchhoff approximation of the spatial derivatives of the reflected
wavefield at point x will also follow the pattern of their acoustic and isotropic elastic
counterparts. Namely, we set

urefl
k;l (x; !) � i! p

spec
l (x)urefl

k (x; !)

= i! p
spec
l (x)h

spec
k (x)R(x;pinc)Ainc(x) exp[i! T inc(x)] ; (10)
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where pspec(x) is the slowness vector of the specular reflected wave, that is, it is related
to ps by Snell's law for plane waves incident on planar reflectors.

To construct the Kirchhoff-Helmholtz modeling formula based on the representa-
tion integral (7), we shall need the GRA Green's function gmi(x

r; !;x) from the point
x to the receiver at xr for another specified wave (also given by a specified ray code).
We shall also need the partial derivatives gmk;j(x

r; !;x) of that GRA Green's function.
The expressions of these two functions can be readily derived upon an obvious choice
of arguments in equations (4) and (6), respectively. A possible wave-mode conversion
at x is taken care of by selecting the proper reflection coefficient in equation (9). With
the Kirchhoff approximation as represented by equations (9) and 10), equation (7) can
be approximated by

uKH
m (xr; !) = i!

Z
�

hm(x
r)

[�(xr) v(xr)]1=2
cijkl(x)nj

[�(x) vr(x)]1=2
(11)

�
�
hri (x) p

spec
l (x)h

spec
k (x)� prl (x)h

r
k(x)h

spec
i (x)

�
� ei![T (x

r ;x)+T inc(x)] a(xr;x)Ainc(x)R(x;pinc) d�

This is the Kirchhoff-Helmholtz integral that models the reflected wavefield from
an interface in an inhomogeneous anisotropic elastic media due to an arbitrary incident
wavefield.

The above-obtained Kirchhoff-Helmholtz integral is of particular interest when the
incident wavefield is chosen to be the GRA Green's function of equation (4). In that
case, that modeling integral becomes a useful approximation of the reflected response
of the interface due to a point-source excitation, namely an approximation of the re-
flected Green's function from that interface. The explicit expression of the Kirchhoff-
Helmholtz integral in this important situation is readily found to be

gKH
mn (xr; !) = i!

Z
�

hm(x
r)

[�(xr) v(xr)]1=2
cijkl(x)nj

�(x) [vr(x) vs(x)]1=2
(12)

�
�
hri (x) p

spec
l (x)h

spec
k (x)� prl (x)h

r
k(x)h

spec
i (x)

�
� ei! T (x

r;x;xs) a(xr;x;xs)R(x;ps)
hn(x

s)

[�(xs) v(xs)]1=2
d� ;

where we have used the simplifying notation

T (xr;x;xs) = T (xr;x)+T (x;xs) and a(xr;x;xs) = a(xr;x) a(x;xs) : (13)

In the next section, the stationary-phase analysis of this integral shows that the high-
frequency asymptotic evaluation yields the GRA expression of the reflected field from
� due to point source at xs and observed at xr.
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THE STATIONARY-PHASE APPROXIMATION

We want to compute the stationary values of the surface scattering integral of the type

I = i!

Z
�
b(x) ei!T (x) d� ; (14)

to leading order in the high-frequency !.

The stationary points ~x satisfy

@T

@�j
=

@T

@xk

@xk

@�j
=rT � tj = 0 ; i; j;= 1; 2 : (15)

where tj , j = 1; 2 are the surface tangents. This condition is equivalent to Snell's law.
For simplicity, we assume that there is only one stationary point ~x. Furthermore, we
assume that the stationary point is regular, so that detH 6= 0, where the matrixH has
elements

Hij =
@2T

@�i@�j
=

@2T

@xn@xk

@xn

@�i

@xk

@�j
; i; j = 1; 2 ; (16)

evaluated at ~x. Then the stationary value of the integral is (Bleistein, 1984, , equation
(2.8.23))

~I = i!

 
2�

j!j

!
jdetHj�1=2 ei

�

4
sgn(!) Sgn(H) b(~x) ei!T (

~x) ; (17)

where ~x = x(~�) is the stationary point and Sgn(H) is the signature of the matrix H ,
that is, the difference between the number of its positive eigenvalues and the number
of its negative eigenvalues.

The stationary point ~x is a point of specular reflection, so that hspec(~x) = h
r(~x)

and pspec(~x) = p
r(~x). This gives rise to the following expression for the integral (12)

after stationary-phase evaluation

gKH
mn (xr; !;xs) ' 2� jdetHj�1=2 ei

�

4
sgn(!) [Sgn(H)+2]

� hm(x
r)

[�(xr) v(xr)]1=2
2cijkl(~x)h

r
i (~x)h

r
k(~x) p

r
l nj

�(~x)[vs(~x) vr(~x)]1=2
(18)

� R(x;xs) a(xr; ~x;xs) ei! T (x
r ; ~x;xs) hn(x

s)

[�(xs) v(xs)]1=2
:

Let us now introduce the group velocities V s;r = jV s;r(~x)j that pertain to the ray
segments connecting the source xs and the receiver xr, respectively, to the reflection
point ~x. We recall that the group velocity is a vector in the ray direction. We denote
by �s;r and �s;r, respectively, the angles that the group and phase velocities V s;r and
v
s;r make with the normal n of the reflector at ~x. In anisotropic media, the ray and
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slowness directions differ in general, that is, �s;r 6= �s;r. Moreover, the three vectors
V

s;r , vs;r and n do not, in general, lie in the same plane (see Figure 2).

Introducing the angle �s;r between the phase and group velocities V s;r(~x) and
v
s;r(~x), we can express the relationship between these quantities as (see de Hoop and

Bleistein, 1997)
vs;r(~x) = V s;r(~x) cos�s;r : (19)

Moreover, we also have that (see., e.g., Cervený, 1995)

cijkl(~x)

�(~x)
hri (~x)h

r
n(~x) p

r
l nj = V r

j (~x)nj = V r(~x) cos�r ; (20)

where V r = jV rj is the group velocity of the ray from the reflection point to the
receiver. The geometry of the reflection point is shown in Figure 1.

When expressions (19) and (20) are used in the stationary result (19) of the
Kirchhoff-Helmholtz integral, this reduces to

g
KH(xr; !;xs) ' g

R(xr; !;xs) ; (21)

where

g
R(xr; !;xs) =

h(xr)

[�(xr) v(xr)]1=2

�
REn(~x;xs)

e�i
�

2
sgn(!)�(xr; ~x;xs)

4�jdetQ2(x
r; ~x;xs)j1=2

� ei!T (x
r; ~x;xs)

�
h
T (xs)

[�(xs) v(xs)]1=2
(22)

is the GRA Green's function for the reflected wave from x
s to xr. It includes the

energy-normalized reflection coefficient

REn(~x;xs) = R(~x;xs)

"
V r(~x) cos�r

V s(~x) cos�s

#1=2
; (23)

relative geometrical spreading factor

jdetQ2(x
r; ~x;xs)j1=2 =

����detH detQ2(~x;x
r) detQ2(~x;x

s)
cos�r cos�s

cos�r cos�s

����1=2 ;
(24)

KMAH index,

�(xr; ~x;xs) = �(~x;xr) + �(~x;xs) + [1� Sgn(H)=2] ; (25)

and reflection traveltime

T (xr; ~x;xs) = T (~x;xr) + T (~x;xs) : (26)
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Note that for each preassigned wave mode that arrive at xr, there is a construction of
the form (22). The total wavefield at xr is, f course, the sum of all of the relevant wave
modes that make up the reflected response.

In acoustic and elastic isotropic media, the phase and group velocities coincide,
implying that �s;r = �s;r and �s;r = 0. As a consequence, the expression (24) for the
relative geometrical spreading reduces to

jdetQ2(x
r; ~x;xs)j1=2 =

�����detH detQ2(~x;x
r) detQ2(~x;x

s)

cos �r cos �s

�����
1=2

: (27)

This simplified expression was proposed by Ursin and Tygel (1997). It has to be cor-
rected for its more general counterpart (24). Note that one can derive a general formula
for the decomposition of the matrix Q2(x;x

s) from ray-theoretical considerations.
This result proves that equation (24) agrees with the reflected wavefield as derived by
ray theory.

CONCLUSIONS

In this paper, we have extended the Kirchhoff-Helmholtz integral that is well-known
for acoustic and elastic isotropic media, to generally anisotropic media. As was done
in the cases of acoustic and isotropic elastic media, the upgoing, scattered field at the
interface was replaced by the specularly reflected field, as approximated by the GRA.
Within the validity of the GRA, the new integral formula can be used to compute
multiply reflected and converted waves in anisotropic media. This also includes a pos-
sible wave-mode conversion at the interface. The present approach provides a “single-
event” approximation that enables us to determine one specifically chosen reflection
without having to calculate all other events that might be considered noise in the actual
problem. This is, of course, no restriction, since the complete wavefield at the receiver
is just the superposition of all possible events that can be calculated independently (but
simultaneously, if so desired) by the corresponding Kirchhoff-Helmholtz integrals.

We have also extended the decomposition formula for the relative geometrical
spreading factor from acoustic and elastic isotropic to anisotropic media. This gen-
eralization has been done independently, based only on ray-theoretical arguments.
The resulting decomposition formula provides the means to calculate the geometrical
spreading of a primary reflected ray in terms of the spreading factors of the incident
and reflected ray segments and a third factor that accounts for the influence of the
interface.

The generalized geometrical-spreading decomposition was crucial to show that the
stationary-phase analysis of the new integral results in the GRA Green's function of
the reflected wavefield. This comparison confirms that the generalized Kirchhoff ap-
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proximation for the reflected field and its normal derivative at the reflector is correct in
generally anisotropic elastic media.
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