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Calculation of effective velocities in cracked media
using the rotated staggered finite-difference grid
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ABSTRACT

The modeling of elastic waves in fractured media with an explicit finite difference
(FD) scheme causes instability problems on a staggered grid because the medium
possesses high contrast discontinuities (strong heterogeneities). For the present study
we apply the rotated staggered grid. Using this modified grid it is possible to simulate
the propagation of elastic waves in a 2D or 3D medium containing cracks, pores or
free surfaces without hard-coded boundary conditions. Therefore it allows an efficient
and precise numerical study of effective velocities in fractured structures. We model
the propagation of plane waves through a set of different randomly cracked media. In
these numerical experiments we vary the wavelength of the plane waves, the porosity
and the crack density. The synthetic results are compared with several theories that
predict the effective P- and S-wave velocities in fractured materials. On the one hand
for randomly distributed rectilinear non-intersecting thin dry cracks the numerical
simulations of velocities of P-, SV- and SH-waves are in excellent agreement with the
results of a modified (or differential) self-consistent theory. On the other hand for
randomly distributed rectilinear intersecting thin dry cracks a classical differential
theory, including a so called critical porosity, is the best way to describe the effective
velocities.

INTRODUCTION

The problem of effective elastic properties of fractured solids is of considerable in-
terest for geophysics, for material science, and for solid mechanics. Particularly, it is
important for constitutive modeling of brittle micro cracking materials. For obvious
reasons of practicality, the problem of three-dimensional medium permeated by circu-
lar or elliptical planar cracks has received more attention in literature. In this paper we
consider the problem of a fractured medium in two dimensions. This may seem to be a
significant oversimplification. However, we think that with this work some broad gen-
eralizations can be elucidated that will help solving problems with more complicated
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geometries.
Finite difference (FD) methods discretize the wave equation on a grid. They replace
spatial derivatives by FD operators using neighboring points. The wave field is also
discretized in time, and the wave field for the next time step is calculated in general by
using a Taylor expansion. The main idea using a staggered grid is to calculate spatial
derivatives halfway between two grid points to improve numerical accuracy. Hence,
some modeling parameters are required to be defined on inter grid locations. Thus
they have to be averaged or the grid values shifted halfway between two grid points
have to be used. This yields for standard staggered grid schemes inaccurate results
or instability problems. This is especially the case when the propagation of waves in
media with strong fluctuations (e.g. cracks) of the elastic parameters is simulated, al-
though the von Neumann stability (see e.g. Crase (1990)) is fulfilled. In the present
numerical study, however, we apply the rotated staggered grid Saenger et al. (1999,
2000) for modeling of elastic wave propagation in arbitrary heterogeneous media. The
rotated staggered grid is briefly discussed in the section ”Finite-difference modeling
of fractured media” .
In this paper we present a numerical study of effective velocities of two types of frac-
tured media. We model the propagation of a plane wave through a well defined frac-
tured region. The numerical setup is described in section ”Experimental Setup” . We
use randomly distributed rectilinear dry thin cracks in both media. For the first type
of media we examine only non-intersecting cracks. The numerical results for P-, SV-
and SH-waves (see section “Non-Intersecting Cracks” ) are compared comprehensively
with several theories Kachanov (1992); Davis and Knopoff (1995) that predict the ef-
fective velocities for such case. In the second type of fractured media we cancel the
restriction of non-intersecting cracks. For this case the theories for non-intersecting
cracks become out of their range of validity. However, a theory of Mukerji et al. (1995)
, including a so called critical porosity, is in excellent agreement with our numerical
results shown in section “ Intersecting Cracks” .

FINITE-DIFFERENCE MODELING OF FRACTURED MEDIA

The propagation of elastic waves is described by the elastodynamic wave equation
(e.g. Aki and Richards (1980)):

�(r) �ui(r) = (cijkl(r)uk;l(r));j + f(r): (1)

For modeling elastic waves with finite-differences, it is necessary to discretize the
stiffness tensor cijkl, the density � and the wave field ui on a grid.
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The standard staggered grid

A standard way of discretization of standard staggered grids (e.g. Kneib and Kerner
(1993)) is shown in Figure 1a. The main reason for using this method is to improve
numerical accuracy with respect to centered FD grids. Figure 1a shows the elementary
cell, replacing, for example, the density at the left and the lower side by the density of
the center and replacing the shear modulus at the lower left corner by the shear modu-
lus at the center.
There is only one density location and one location for the Lamé parameter � in an
elementary cell. The calculation of the stress component �xz has to be done by multi-
plying the values of strain and stiffness defined at different positions. The same diffi-
culties arises for the calculation of the acceleration, since the density has changed its
location completely. When the wave field hits the inhomogeneities with high density
contrasts (e.g. cracks), stability problems can also occur. Here we obtain an unstable
modeling of a wave field diffraction on a crack Saenger et al. (2000). Note, that such
stability problems exist although the von Neumann stability criterion is fulfilled.

The rotated staggered grid

All these difficulties described above can be avoided by choosing another configuration
of the grid. Placing all components of the stiffness tensor at the same position within
the elementary grid cell (e.g. the center), the positions of the modeling parameters
are found directly as shown in Figure 1b. The directions of spatial derivatives have
changed from x and z to ~x and ~z.
The grid in Figure 1b satisfies all conditions with respect to the operations that are
necessary to perform a time step. The parameters that have to be multiplied are defined
at the same location and derivatives are defined between the parameters that have to
be differentiated. Since the density is not located at the same position as the stiffness
tensor elements, a density averaging (using the four surrounding cells) has also to
be done for this grid. In the case of homogeneous cells or a linear behavior of the
density between the stiffness locations, the density coincides with the exact density
after averaging. The new distribution of elastic parameters is also advantageous for
anisotropic modeling.

Stability and dispersion

Since FD modeling approximates derivatives by numerical operators and uses Taylor
polynomials to perform the time update, inaccuracies occur, especially for coarse grids.
One can separate these numerical errors into amplitude and phase errors. For a plane
wave propagating through an infinite, isotropic and homogeneous medium, the ampli-
tude must be conserved, and the velocity of propagation is not frequency-dependent. In
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Figure 1: Elementary cells of different staggered grids. Locations where strains, dis-
placement and elastic parameters are defined. (a) Locations on a standard staggered
grid (e.g. Kneib and Kerner (1993)) if no averaging of medium parameters is per-
formed. (b) Elementary cell of the rotated staggered grid. Spatial derivatives are per-
formed along the ~x- and ~z-axes. The wave equation and the elements of the stiffness
tensor are the same as in (a).

FD modeling, it is possible that the amplitude increases exponentially with every time
step. In this case, the modeling scheme is said to be unstable. Frequency-dependent
velocity errors, also called numerical dispersion, cannot be excluded completely but
can be estimated and, therefore, reduced to a known and acceptable degree. Note, that
the von Neumann stability criterion is not in connection with the stability problems for
high contrast inclusions. For the rotated grid the stability criterion for the 3D case and
for the 2D case are the same. We obtain:

�tvp

�h
� 1=(

nX
k=1

jckj): (2)

In this equation ck denotes the difference coefficients (e.g. Central Limit coefficients
Karrenbach (1995), vp the compressional wave velocity, �t the time increment, and
�h the grid spacing. This result yields the von Neumann stability criterion for the
rotated grid for all wave numbers in the case of homogeneous media and for 2nd order
operator in time.
The dispersion error for the rotated staggered grid are similar to those of the conven-
tional staggered grid. For a more detailed description of the rotated staggered grid
refer to Saenger et al. (1999, 2000).
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EXPERIMENTAL SETUP

As described above, the rotated staggered FD scheme is a powerful tool for testing
theories about fractured media. There exist many theories that predict the effective
elastic moduli of multiply fractured media as a function of crack density (e.g Davis
and Knopoff (1995); Kachanov (1992)) or porosity (e.g. Mukerji et al. (1995); Norris
(1985); Zimmermann (1991); Berryman (1992)). The elastic moduli and the veloci-
ties in a medium are related with well known formulas Aki and Richards (1980). In
order to test such theories we create some elastic models with a region with a well
known crack density (Eq. 3) or porosity. The cracked region was filled for this reason
at random with randomly oriented cracks. In Figure 2 (left hand side) we can see a
typical model with non-intersecting cracks. This model contains 1000 � 1910 grid
points with an interval of 0.0001m. In the homogeneous region we set vp = 5100m

s
,

vs = 2944m
s

and �g = 2:7 g
cm3 . Table 1 is the summary of relevant parameters of all

the models we use for our experiments. For the dry cracks we set vp = 0m
s

, vs = 0m
s

and �g = 0:0000001 g

cm3 which shall approximate vacuum Saenger et al. (1999, 2000).
Therefore each additional crack increase the porosity.
It is very important to note that we perform our modeling experiments with periodic
boundary conditions in the horizontal direction. For this reason our elastic models are
generated also with this periodicity. Hence, it is possible that a single crack start at the
right side of the model and ends at its left side.
To obtain the effective velocities in the different models we apply a body force line
source at the top of the model. The plane wave in this way generated propagates
through the fractured medium. With two lines of geophones at the top and at the bot-
tom (see Figure 2) it is possible to measure the time-delay of the plane wave caused
by the inhomogeneous region. With the time-delay one can calculate the effective ve-
locity. Additionally, the attenuation of the plane wave can be fixed.
The direction of the body force and the source wavelet (source time function) can
vary. Owing to this we can generate two types of shear (SH- and SV-) waves and one
compressional (P-) wave. The source wavelet in our experiments is always the first
derivative of a Gaussian with different dominant frequencies and with a time incre-
ment of �t = 5 � 10�9s. In Table 2 one can find details of the wavelets.
A very similar and successful experimental setup to test effective parameters in acous-
tic media can be found in Shapiro and Kneib (1993).

NON-INTERSECTING CRACKS

In this section we consider randomly distributed rectilinear non-intersecting thin dry
cracks in 2D-media. We found papers Kachanov (1992) and Davis and Knopoff (1995)
as good start to study such a case. Both papers discuss three different theories for 2D-
media that predict an effective velocity for fractured models. Namely, they are the
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No. crack length aspect number porosity � crack
density of cracks ratio of cracks of the region

� [0.0001m] of cracks crack region [grid points]

1 0.199994 7 0.14 15280 0.1407 1000*1000
2 0.200013 14 0.077 3881 0.0708 1000*1000
3 0.200035 28 0.04 996 0.0358 1000*1000
4 0.024706 56 0.021 31 0.0022 1000*1000
5 0.050219 56 0.021 63 0.0046 1000*1000
6 0.100226 56 0.021 126 0.0091 1000*1000
7 0.200357 56 0.021 252 0.0181 1000*1000
8 0.200355 56 0.021 252 0.0181 500*2000
9 0.199987 112 0.011 126 0.0091 1000*1000

10x 0.050064 56 0.021 63 0.0045 1000*1000
11x 0.100054 56 0.021 126 0.0091 1000*1000
12x 0.200367 56 0.021 252 0.0181 1000*1000
13x 0.300409 56 0.021 378 0.0270 1000*1000
14x 0.400803 56 0.021 504 0.0360 1000*1000
15x 0.601186 56 0.021 756 0.0539 1000*1000
16x 0.800734 56 0.021 1007 0.0720 1000*1000

Table 1: This table contains information of the different crack models of the numerical
study. The models with an x attached to its number have intersection of cracks.

No. ffund P- wavelength S- wavelength
(Hz) (fund.) (fund.)

[0.0001 m] [0.0001 m ]

1 2200000 23 13
2 800000 64 37
3 400000 128 74
4 120000 425 245
5 50000 1020 588
6 22000 2318 1338

Table 2: Information of the different wavelets of the numerical study.
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Fractured Model

Figure 2: The left side shows a typical fractured model (No. 7) used for the numerical
experiments. We introduce a cracked region in a homogeneous material. At the top
we place a small strip of vacuum. This is advantageous for applying a body force line
source with the rotated staggered grid. The right side is a snapshot of a plane wave
propagating through the cracked region.

“ theory for non-interacting cracks” , the “self-consistent theory” and the “modified (or
differential) self-consistent theory” . Our goal is to compare the numerical results of
the present study with the predicted effective velocities of the three theories.
In order to give an overview we summarize here the ideas and results for the three
theories for one type of shear wave (SH- wave; vibration direction perpendicular to
the 2D-model). For the definition of the crack density parameter we use (as Kachanov
(1992)):

� =
1

A

nX
k=1

l2k (3)

(rectilinear cracks of length 2lk, A is the representative area).
The formula for the theory for non-interacting cracks is derived for the case of a dilute
crack density. The energy per unit crack length, needed to insert a single antiplane
crack, is added n times to the energy of the unfractured medium. With this assumption
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we can calculate the effective shear modulus < � > Davis and Knopoff (1995):

< � >= �0
1

1 + � � �=2 ; (4)

where �0 is the shear modulus of the unfractured medium and � is the crack density
(Eq. 3).
In the simplest form of self-consistent calculations to determine the properties at higher
orders, it is argued that an individual crack is introduced into an already cracked
medium and hence should be subjected to the stress field in the flawed system and
not to that in the unflawed system Budiansky and O'Connell (1976); O'Connell and
Budiansky (1974, 1976). This yields the following prediction:

< � >= �0 (1� � � �=2): (5)

Two other papers argue that the change in energy should be calculated sequentially.
This argument leads to the shear modulus as the solution to a simple differential equa-
tion Bruner (1976); Henyey and Pomphrey (1982), which is:

< � >= �0 e����=2: (6)

This is called the modified (or differential) self-consistent theory.
Note, that in first order all three theories predict the same effective modulus.

Numerical results

In this section we discuss the numerical results on effective wave velocities. They are
depicted with dots in Figure 3. For comparison, the predictions of the three theories
described above are shown in the same Figure with lines.
We show the normalized effective velocities for three types of waves. The relative
decrease of the effective velocity for one given crack density is in the following suc-
cession: For SH-waves we obtain the smallest decrease followed by SV-waves. For
P-waves it is largest. For each wave type we perform four numerical FD-calculations
with different crack densities to obtain the effective velocity. For these measure-
ments we only use the models No. 4,5,6,7 (see Tab. 1) and the wavelet No. 5 (see
Tab. 2). Hence it follows the ratio of crack length to the dominant wavelength (Eq. 7):
p = 0:095 for S-waves, and p = 0:055 for P-waves.
In Figure 3 the three dashed lines are due to the prediction by the theory for non-
interacting cracks Kachanov (1992); Davis and Knopoff (1995). The three dashed-
dotted lines are the prediction by the self-consistent theory Kachanov (1992); Davis
and Knopoff (1995) and the three solid lines are to the prediction by the modified (or
differential) self-consistent theory Kachanov (1992); Davis and Knopoff (1995). The
top curves (red) are the results of a shear wave with vibration direction perpendicular
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to the 2D-model (SH-waves). The other shear wave results (horizontal vibration direc-
tion, SV-waves) are in the middle (green). The bottom curves (blue) are the results for
compressional (P-) waves.
If we follow the argumentation of Douma (1988), the aspect ratio of the cracks we
used in our numerical experiments do not significantly influence the results of the
three discussed theories. A final result is that our numerical simulations of P-, SV- and
SH-wave velocities are in an excellent agreement with the predictions of the modified
(or differential) self-consistent theory.
Now we want to examine the influence of the ratio of crack length to the dominant
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Figure 3: Normalized effective velocity versus crack density. The details are in section
”Numerical results” .

wavelength in our numerical experiments. The ratio is given by the parameter p:

p =
2l

�dom
(7)

(rectilinear cracks of length 2l, dominant wavelength �dom). We restrict ourself to study
only the influence with one single crack density (� = 0:2) and for shear waves with
vibration direction perpendicular to the 2D-model.
There are two possibilities to vary the parameter p. The first possibility is to vary
�dom by using all wavelets in Table 2 and do not change the length of the cracks using
models No. 7 and 8 (Table 1). It is important to note that the three theories mentioned
above are only valid for wavelengths much larger than the crack length Peacock and
Hudson (1990). With results shown in Figure 4 (dots joined with (blue) dashed line)
we demonstrate that this is no restriction for our numerical calculations.
For the second curve in Figure 4 (dots joined with (red) dashed-dotted line) we always
use wavelet No. 5 and vary the length of the cracks using models No. 1,2,3,7,8,9 (see
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Table 2). Note, that with decreasing length of cracks the porosity is increasing. There-
fore, the decrease of the effective velocity for small values of p in this curve can be
explained by the increasing influence of the porosity of the used models.
The main result of both curves in Figure 4 is that our calculated effective velocities
(dots in Figure 4) always match the prediction by the modified self consistent the-
ory ((black) solid horizontal line) better than the prediction by the theory for non-
interacting cracks ((black) dashed horizontal line) for all values of p. Thus, the values
of p used for the numerical experiments depicted in Figure 3 are reasonable.
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Figure 4: Normalized effective velocity versus p = 2l = �dom, for crack density
� = 0:2. The details are in section ”Numerical results” .

INTERSECTING CRACKS

This section is about randomly distributed rectilinear intersecting thin dry cracks in
2D-media. The theories described in section “Non-Intersecting cracks” are not appli-
cable in this case, because they are derived in particular for non-intersecting cracks.
Therefore we have to use another theory for the comparison between prediction of
the effective velocity and our numerical results. The differential effective medium
(DEM) Norris (1985); Zimmermann (1991) formulations, including a critical porosity
are appropriate in this case and can be found in Mukerji et al. (1995). This modified
DEM model incorporating percolation behavior is always consistent with the Hashin-
Shrikman bounds Hashin and Shtrikman (1963). Note, for this theory the effective
velocities are predicted in dependence of porosity � and not of crack density �.
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The first step to use this theory is to determine the critical porosity. At this percolation
porosity, the material is a loose packing of grains barely touching each other. With our
models this value is easy to detect visually. For a porosity of �c = 0:13 we found one
horizontal circular way where the elastic parameters are set to the vacuum values.
The second step is to calculate the effective elastic parameters at the critical porosity.
The moduli at the percolation point are equal to the Reuss (harmonic) average of the
constituent moduli Mukerji et al. (1995). In our case we obtain:

�c = lim
�2!0 Pa

2

1=�1 + 1=�2
= 0 Pa (8)

and

Kc = lim
K2!0 Pa

2

1=K1 + 1=K2

= 0 Pa: (9)

The third step is to calculate the effective bulk and shear moduli K(y) and �(y). We
have to solve the following two coupled differential equations Berryman (1992):

(1 � y)
d

dy
[K(y)] = [K2 �K(y)]P (y) (10)

(1� y)
d

dy
[�(y)] = [�2 � �(y)]Q(y) (11)

with initial conditions K(0) = K1 and �(0) = �1. For needle-like inclusions P (y)
and Q(y) are Berryman (1980):

P (y) =
1
3
�2 +K(y) + �(y)

K2 +
1
3
�2 + �(y)

; (12)

Q(y) =
1

5

 
4�(y)

�2 + �(y)
+

2 [�(y) + (y)]

�2 + (y)
+

K2 +
4
3
�2

K2 +
1
3
�2 + �(y)

!
(13)

with:

(y) =
�(y) [3K(y) + �(y)]

3K(y) + 7�(y)
: (14)

The main idea to involve the critical porosity in this equations is to set Mukerji et al.
(1995): K2 = Kc and �2 = �c. With this definition, y denotes the concentration of
the critical phase in the material and now the total porosity is � = y�c. The effective
velocities predicted by this theory are plotted in Figure 5.

Numerical results II

Our numerical results for intersecting cracks for shear waves with vibration direction
perpendicular to the 2D-model (SH- waves) can be seen in Figure 5. For the calcu-
lations marked with dots we use always wavelet No. 5 (see Table 2). The models
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No. 10x,11x,12x,13x,14x,15x,16x for experiments are in Table 1. In fact, our nu-
merical results and the differential effective medium formulations, including a critical
porosity, are in a very good agreement.
Note, that the theory described above is a 3D theory. With our 2D modeling results we
can only test some special cases of this theory. For SH-waves one can say that our 2D
crack model have needle-like inclusions.
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Figure 5: Normalized effective shear (SH-waves) velocity for intersecting cracks ver-
sus porosity. Dots: Numerical results, Solid Line: Theoretical prediction. The details
are in section “Numerical results II” .

CONCLUSIONS

Since FD modeling discretize the medium and the wave field on a grid and not by finite
volumes (like, e.g., Finite Element schemes), it requires very few assumptions. If the
discretization is done correctly, FD modeling is very fast and accurate. In contrast to
a standard staggered grid high-contrast inclusions do not cause instability difficulties
for our rotated staggered grid. We demonstrated with our numerical calculations in
this paper that our modification of the grid can model fractured media very well. For
both cases, intersecting and non-intersecting cracks, the differential methods are very
successful to predict effective velocities in fractured media.
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