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A Chebyshev method on 2D generalized coordinates
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ABSTRACT

We present a method which allows to generate 2D numerical grids in generalized
coordinates from any number of predefined grid lines and solve the wave equation
in these coordinates by a Chebyshev pseudospectral method. The grid generation
algorithm is based on a transfinite interpolation and defines the mapping function
by means of spline interpolations. The stability of the method depends only on the
minimum grid spacing.

INTRODUCTION

The numerical modelling of curved interfaces on rectangular grids imposes conditions
for the grid spacing to suppress undesired diffraction effects. Due to stability reasons
the time stepping directly relates to the grid spacing. A grid refinement thus leads
to both a larger data volume and a larger number of time steps. Especially for pseu-
dospectral methods, which require a lower number of grid points per wave length than
standard FD methods a correct representation of curved boundaries is of great value.

A major problem in using generalized coordinates is to initialise the grid. Our intention
is to introduce arbitrarily shaped layer boundaries in two dimensions without changing
the grid boundaries. Grid size and number of grid points remain. In order to define
the mapping functions the generalized coordinates must be known. The grid genera-
tion requires two steps: (1) computation of the generalized coordinates considering the
specified layer boundaries and (2) definition of the mapping functions. The first can
be done by means of transfinite interpolations (Hoschek and Lasser, 1992). The layer
boundaries divide the model space into several patches. Transfinite interpolations in-
terpolate the boundary curves of each patch using appropriate blending functions but
leave the boundary curves unchanged. In the second step we calculate the node depen-
dent shift values and define the mapping functions using spline functions.
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CHEBYSHEV METHOD

We use a Chebyshev collocation method to solve the wave equation on the gener-
alized grid. The solution of the wave equation is expanded in terms of Chebyshev
polynomials (Gottlieb et al., 1984). In the computational domain the grid is defined
by the Gauss–Lobatto collocation points (Carcione and Wang, 1993). Since this grid
becomes very fine near the grid boundaries, a one–dimensional stretching function is
applied for each coordinate in order to allow increased time steps for the integration
(Kosloff and Tal-Ezer, 1993). For the forward integration in time we use a fourth order
Runge–Kutta scheme. Absorbing boundary conditions are imposed by a characteristic
treatment (Thompsen, 1990).

GRID GENERATION

The model space of the size M � N is discretized by nx � nz grid points. The coor-
dinates of the unmapped grid are given by the stretched Chebyshev coordinates ui and
vj

ui =
M

2
(1 � hu(�i)) i = 0; ::; nx (1)

vj =
N

2
(1� hv(�j)) j = 0; ::; nz

where �i and �j are the Gauss–Lobatto points defined by the extreme values of the
Chebyshev polynomials of order nx and nz . hu and hv are one–dimensional stretching
functions in order to overcome the superfine grid spacing near the boundaries. For
details see (Carcione and Wang, 1993; Kosloff and Tal-Ezer, 1993). We introduce the
mapping by defining r and s arbitrarily shaped boundary functions (e.g. layer bound-
aries) in each dimension and divide the model space into r+1�s+1 patches (figure 1).
Each patch is represented by the coordinates at the four intersection points Pi and the
boundary functions (e.g. spline functions) fr; fr+1; gs and gs+1 (figure 2). By means
of a transfinite interpolation (Hoschek and Lasser, 1992) each patch is discretized by
ms � nr nodes and the generalized coordinates x and z are then given by

x(k; l) = �0(ik)gs(z(k1; l)) + �1(ik)gs+1(z(k2; l)) (2)

�
�
�0(ik); �1(ik)

� x(k1; l1) x(k2; l1)

x(k1; l2) x(k2; l2)

! 
�0(kl)

�1(kl)

!
z(k; l) = �0(jl)fr(x(k; l1)) + �1(jl)fr+1(x(k; l2))

�
�
�0(ik); �1(ik)

� z(k1; l1) z(k2; l1)

z(k1; l2) z(k2; l2)

! 
�0(kl)

�1(kl)

!
where

x(k; li) = (1 � ik)x(k1; li) + ik x(k2; li); li 2 [l1; l2]
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Figure 1: Example of the decomposition of the model space into nine patches. The
bold lines mark the boundary functions. The generalized coordinates of the patches 1
and 2 are displayed.

z(ki; l) = (1 � jl) z(ki; l1) + jl z(ki; l2); ki 2 [k1; k2]

k2 = k1 +ms; l2 = l2 + nr; ik; jl 2 [0; 1]; k = k1; ::; k2; l = l1; ::; l2

�0 and �1 are blending functions which interpolate the boundary curves. Since the
patches have to be continuous at the boundaries, we use Hermite polynomials

�0(i) = 1 � 3i2 + 2i3; �1(i) = 3i2 � 2i3 i 2 [0; 1] (3)

which fulfill the condition �0i(k) = 0 (i; k = 0; 1).

COORDINATE TRANSFORMATION

The node dependent shift values �u and �v of the coordinates u and v can be ac-
complished analytically by cubic spline interpolants gx and gz in x- and z–direction
respectively. Thus, the mapping is represented by

x(i; j) = ui +�u(i; j) = ui + gx(ui; vj) (4)

z(i; j) = vj +�v(i; j) = vj + gz(ui; vj)

Calculation of the spatial derivatives of a function f defined on the generalized
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Figure 2: Patch defined by the the points P1, P2, P3 and P4 and the four boundary
functions fr; fr+1; gs and gs+1. In the discretized grid the boundary functions represent
the lth1 , lth2 , kth1 and kth2 grid line, respectively.

grid, requires spatial derivatives of the mapping functions
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cx, cz, dx and dz are products of the spatial derivatives of the mapping functions. Again,
the spatial derivatives of gx and gz are derived analytically by means of cubic spline
interpolations. The Jacobian of the transformation is

J =

 
1 +

@gx

@u

! 
1 +

@gz

@v

!
� @gx

@v

@gz

@v
: (6)



193

It is a quantitative measure of the change of the grid cell size: dudv = Jdxdz.

Velocity Stress Formulation on the transformed grid

In order to calculate the spatial derivatives of the velocity stress formulation of the
elastic equations on the transformed grid, new terms have to be added to the existing
equations (Fornberg, 1988)
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Effectively only two additional derivatives (underlined) have to be calculated. In con-
trast to the spatial derivatives the multiplicative factors cx, cz , dx and dz (see eq. (5))
have to be calculated only once. If the grid is not transformed cx = cz becomes zero,
dx = dz becomes one and the right hand side reduces to the partial derivatives in bold
face (u = x and v = z).

DISCUSSION

Computationally the costs for introducing 2D mapping into the Chebyshev code are
low. Only two additional spatial derivatives are required. Since all spatial derivatives
in this method are calculated analytically by either the Chebyshev method or spline
interpolation no numerical dispersion error occurs. The use of generalized coordi-
nates, however, is limited by the minimum grid spacing which is directly related to the
time discretisation by the time marching scheme. The explicit Runge–Kutta scheme
encounters the condition �t = O(N�1). It is clear that strong lateral and vertical
variations in the grid lead to a significant grid refinement, which make the technique
nearly impractical. A solution to this problem is to approximate complex geometries
(e.g. salt domes) not by a single curve, but to use several curves which are composed
to match the geometry.
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EXAMPLE

In order to demonstrate the feasibility of this approach we composed a salt dome model
and mapped it onto the grid (figure 3). It is not practical to represent the salt dome by a
single boundary, since at its base the grid spacing would be very small. The bold lines
mark the spline curves which are used to approximate the outline of the salt body.

The Jacobian of the mapping ranges between 0.5 and 2.1 (figure 4). This cor-
responds qualitatively to the changes in grid spacing. The grid spacing is enlarged
where the J > 1 and reduced where J < 1. The relative changes in the minimum and
maximum grid spacing are -0.4 and 0.55.

A snapshot of the vertical component of a simulation run through this model is
displayed in figure 5. The velocity within the salt is higher than in the overburden.
The wave fronts are not altered by the mapped grid. One might expect diffraction
effects at the upper left and right edges of the dome, where the approximating curves
intersect, since the outline of the dome is not continuous there. Obviously this is here
not the case. This phenomenon is not yet understood and has to be studied in more
detail.
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Figure 3: Salt dome model composed of nine patches. The bold lines mark the bound-
aries of the patches. Every fourth grid line is displayed.



195

1.1

0.9

1.1

0.7

0.9

1.3

1.3

1.1

1.5

0.7

1.5 1.7

1.5

1.3

0.9

1.3

1.9
1.92.1

Figure 4: Jacobian of the salt dome model. The white line outlines the salt dome.
Contour lines range from 0.5 to 2.1. The grid spacing is enlarged where J > 1 and
reduced where J < 1.

Figure 5: Snapshot through salt model. The white line outlines the salt body. Note that
the wave propagation is not disturbed by the curved grid.
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CONCLUSION

We developed a method to initialise grids from arbitrarily shaped boundary curves and
solve the wave equation on these grids by a pseudospectral method. First simulation
runs demonstrate, that it is possible to approximate complex geometries by several
curves. Further investigations will comprise a qualitative and quantitative analysis of
the factors limiting the grid mapping, a testing of the robustness of the method and a
comparison with other methods, e.g. Finite Differences.
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