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Simultaneous computation of P- and S-wave traveltimes
for pre-stack migration of P-S converted waves
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ABSTRACT

In doing converted wave migration we need to compute traveltimes for both P-
and S-wave branches. In order to compute these traveltimes given a set of macro ve-
locity models we use the perturbation technique to simultaneously compute P- and
S- traveltimes in one run taking into consideration that the vp=vs-ratio deviates only
slightly from an initial constant average value. To accomplish our goals, we use the
raypath of P-wave to compute traveltimes for the S-wave. We can generate a reference
S-wave velocity model by scaling the well-determined P-wave velocity with the aver-
age vp=vs-ratio of the whole model. P-wave traveltimes are computed using Vidale
FD-method. S-wave traveltimes in the reference model will then be given by rescaling
of the P-wave traveltimes with the average vp=vs-ratio. Traveltimes of the perturbed
S-velocity models are then computed using a first-order perturbation technique under
the assumption that absolute changes in the perturbed models are within the range of
the validity of perturbation principles.

For this paper we incorporate the method in a fast and robust finite difference
(FD) traveltime computational tool. The technique is evaluated by computing S-
traveltimes of a 10% perturbed constant gradient model and the results are compared
with the directly computated traveltimes.

INTRODUCTION

The key element of the pre-stack Kirchhoff depth migration is the calculation
of traveltime tables, used to parameterize the asymptotic Green's functions at grid
points. In order to migrate converted waves one needs to compute traveltimes for the
P-and S-wave field to any subsurface point of the discretized model. In the past years
much research work have been done on fast computational methods for traveltimes
either by using ray tracing implemented as wavefront construction (WFC) (Vinje et
al., 1993; Ettrich and Gajewski, 1996a) or finite difference (Vidale, 1988; Podvin
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and Lecomte, 1992; Qin et al., 1992; Van Trier and Symes, 1991). The traveltimes
computed with these methods are very accurate if the macro-velocity model used is
exactly correct. This requirement is hardly met in practical applications. Thus, it is
sometimes recommended to compute traveltimes for various models. (Ettrich and
Gajewski, 1998) developed a finite difference method based on Vidale's FD-eikonal
solver to compute traveltimes by first-order perturbation but their method was only for
single component wave fields (i.e., P-P, S-S). They called this FD-perturbation method.

In this paper, we extend their method to simultaneously compute traveltimes
for both P- and S- waves needed for mode converted reflection migration. The
simultaneous computation is efficiently realized by computing traveltimes only for a
P-wave model and calculating the traveltimes for some perturbed S-wave models by
perturbation thereby using the raypaths of the P-waves. We scale the P-wave model
with an initial constant vp/vs-value of the whole model to obtain a reference S-wave
model (assuming that the P/S-wave velocity ratio deviates only slightly from the initial
average value). This initial reference model determines the raypaths of the S-wave
which is the same as in the P-wave model (see below). The other S-wave models
are then considered as perturbed models. The Vidale finite-difference method is used
to compute P-wave traveltimes. S-wave traveltimes in the reference model are then
obtained by multiplying the P-wave reference traveltimes by the average vp/vs-ratio.
If the velocity ratio remains truely constant throughout the whole model then P- and
S-rays propagate exactly along the same path. In this case, the first-order perturbation
method is exact for infinitely large velocity differences. However, in practice we are
often confronted with velocity ratios which vary along the ray path. For example, in
the shallow unconsolidated subsurface, the vp/vs-values are relatively high due in part
to extensive microcracks which will lead to low S-velocity (Thurber and Atre, 1993).
We apply our technique using an isotropic medium and show that it is valid if the
velocity ratios vary up to about 10% of its original value.

Taking into account the range of applicability of any first-order perturbation
method, the usuall assumptions made when applying FD-methods for solving the
eikonal equation are made. The main advantage of using these perturbation principles
lies in the computational speed as compared to a case where the migration is done
using P- and S-wave velocity model separately. The method is applicable to all
converted reflection modes (P-S, S-P). Direct application to non-converted modes has
been implemented into the WFC method (Ettrich and Gajewski, 1996a). Incorporation
of this technique to WFC method is much easier since raypaths are computed
intrinsically with ray tracing.

In this paper we are not going to give any details on how to implement the
perturbation technique into the FD-eikonal solver algorithm since these are given
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in Ettrich and Gajewski (1998). For highest efficiency and with further respect to
3-D, they implemented the pertubation integrals along rays into the eikonal solver
developed by Vidale (1988). They also compared the computing times for 10 slightly
deviating 2-D isotropic models and concluded that the computational speed of the
FD-perturbation method with respect to the original Vidale method was about 43%
faster.

In the next section we will show that for a constant vp/vs-value the transmis-
sion angles for P- and S-waves are equal. Next we show the basic perturbation method
which will be followed by numerical tests.

RAYPATH FOR A CONSTANT P/S-VELOCITY RATIO

Here we show that if vp/vs-ratio is constant then P-and S-waves propagate along
the same raypaths. For this we use the kinematic ray tracing (KRT) equations. If the
raypaths are the same then it should be possible to derive KRT-equations for S-waves
from those of P-waves and snell's law. The KRT-equations for P-wave are given as
(Aki and Richards, 1980):

d~x

d�
= v2p~p;

d~p

d�
= � 1

vp
rvp; (1)

where ~p = slowness vector, vp = P-wave velocity, � = traveltime and ~x = position
vector of the ray. Let us write

vp

vs
= const. = : (2)

From equation (2), we see that vp = vs. Now inserting this into equation (1) we
obtain for the first part:

d~x

d�
= v2s~p

2; (3)

which then gives, apart of the constant, the first part of the KRT-equation for S-
waves. For the second part, we have

rvp = rvs; d~p

d�
= � 1

vs
rvs: (4)

This implies
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d~p

d�
= � 1

vp
rvp = � 1

vs
rvs; (5)

which is another form of snell's law.

Thus, from the above derivations we see that when the P/S-velocity ratio
is constant the transmission angles for P-wave and S-wave are equal. On the other
hand if  is a function of ~x, then equation (4) will be different since we will then have

d~p

d�
= � 1

vs
r(vs) = �( 1


r +

1

vs
rvs): (6)

Now we expand the first term on the right hand side of equation (6) and show that
this will give second-order terms which can be neglected. To first-order the perturbed
velocity ratio  is written as

 = o +�; (7)

such that

j�j � o;

whereby o is the constant unperturbed ratio and � is the P/S-wave velocity ratio
difference. Inserting equation (7) into equation (6) and retaining only the first term of
the right hand side,

� 1

o +�
(r(o +�)) = � 1

o +�
(ro| {z }
= 0

+ r(�)| {z }
second�order term

): (8)

Not that the symbol � indicates difference and should not be confused with the
Laplace operator. Similar insertion of equation (7) into equation (3) will result also in
second-order terms.

THE PERTURBATION METHOD

Following first-order perturbation, the traveltime differences between a reference
medium and a slightly deviating perturbed medium are given by integration of the
slowness differences.
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�t =
Z
ray

(
1

vpert
� 1

vref
)dl; (9)

whereby

vpert = perturbed velocity model and vref = reference velocity model.

The line integral is performed along the raypath computed in the reference S-wave
model (Note that this is the scaled P-wave model). How these raypaths are computed
in the case of FD-perturbation method is given in Ettrich and Gajewski (1998). For
this paper vref is given as:

vref = vp
1

o
; (10)

while vpert are the perturbed S-wave velocity models.

The FD-perturbation method is then used to compute S-wave traveltime differ-
ences from equation (9). The perturbed S-wave traveltimes are then given as

tpert = tref + �t: (11)

S-wave traveltimes in the reference model are obtained by multiplying P-wave
traveltimes by o, i.e., tsref = otp. From equation (9), we see that the traveltime dif-
ference is given by summation along the common P- and S-wave raypath determined
in the reference model. Differences in P- and S-wave raypath due to vp/vs changes are
not considered. As in tomographic inversion (Thurber and Atre, 1993), we have shown
that these raypath differences would have only a second-order effect on traveltime dif-
ference and velocity perturbation estimation (see equation (8)). The Fermat's principle
is invoked to justify the use of the P-wave path to compute S-wave traveltimes, so that
the variation of the perturbed S-wave path from the initial (P-wave) path (which is zero
for truely constant vp/vs) is negligible small. Indeed, if spatial variations of vp/vs are
modest in the range of applicability of first-order perturbation then one would expect
that the curved raypath would be one that makes traveltimes an extremal with respect
to path perturbation (Raypath stationarity due to Fermat's principle). Ben-Menahem
and Singh (1981) (see pp. 738 - 739) also showed that perturbation in raypaths induced
by velocity heterogeneities will give rise to second-order effects in the corresponding
perturbation in the traveltime. To first-order these effects can well be neglected.
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NUMERICAL TESTS

The figures below show some numerical tests of the method. A constant gradient
2-D P-wave velocity model with a parabolic lens is multiplied by an average vs/vp-ratio
of 1p

3
to give a reference S-model. The velocity in the lens has a negative gradient.

We perturb the S-wave velocity in the parabolic lens by 10% of its original value.
The S-velocities around the lens are kept unchanged. With this we have a vertical
and lateral change of vp/vs-ratio in the model. The model dimension is 0.6 km x
0.6 km and consists of 301 x 301 samples arranged in a rectangular grid with 2 m
grid spacing. The source is located at 0.3 km on the surface of the model. In the
unperturbed lens vp= 1.0 km/s and vs= 0.58 km/s, while in the perturbed lens vs= 0.52
km/s and the surrounding S-velocities are unchanged such that v0s= 1.15 km/s. We use
the FD-perturbation method to compute S-traveltimes in the perturbed model. We also
computed directly S-traveltimes in the perturbed model using the Vidale's method and
compared the relative errors. Figure 2 shows the absolute value of the errors in [%].
Overlayed on the error plot are directly computed traveltime isochrons (white lines)
and isochrons computed by perturbation (dashed lines). We see that the relative error
is less than 1%.
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Figure 1: A 2-D constant gradient S-wave velocity model with a parabolic lens at the
center (used as reference model). Overlayed are traveltime isochrons directly com-
puted using 2-D-Vidale FD-algorithm.
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Figure 2: Absolute values of the relative error [ % ] of directly computed traveltimes
using the FD-method and the FD-perturbation method for a perturbed S-wave velocity
model. Overlayed are the directly computed traveltime isochrons (white lines) and the
isochrons computed by perturbation (dashed lines).



140

SUMMARY

The following give the various steps done.
� First we compute traveltimes for P-waves using FD-eikonal solver,
� then compute initial traveltimes for S-waves by scaling those of P-wave,
� compute S-wave traveltime differences using equation (9),
� and finally we compute perturbed S-wave traveltimes using equation (11).

LIMITATIONS

The limitations given by Ettrich and Gajewski (1998) are also valid here. The
effect of considering a linear relation i.e., first-order for the velocity ratio variation
rather than the more accurate nonlinear form will generally result in a slight decrease
of accuracy. Furthermore, if the velocity ratio variation is substantial then raypaths
will deviate and the perturbation principle will break down.

CONCLUSION

We have demonstrated how to use initial raypaths for S-waves computed from a P-
wave reference model to simultaneously compute S- and P-wave traveltimes, thereby
assuming an initial constant vp/vp-ratio. The accuracy of the method is dependent
on the initial P- and S-models, respectively, since the computed traveltime difference
is subjected to the assumption of similar path geometries for the P- and S-waves in
the initial model. We showed in the examples that if the velocity ratio deviates only
slightly (10%) from the initial value, the first-order perturbation technique can be used
to correctly compute P- and S-wave traveltimes simultaneously. The relative errors are
less than 1%. We also showed that for a truely constant velocity ratio, the raypath of
the P- and S-waves will coincide. Thus, FD-perturbation method can advantageously
be applied to do at least correct kinematical pre-stack Kirchhoff migration as well as
pre-stack velocity estimation (for both P- and S-wave models) and estimation of vp/vs
variations. It can also be applied in tomography. For migration purposes the reflec-
tion traveltimes are computed by combining information from source and geophone
traveltime tables. After the calculation of the source (P-wave) and receiver (S-wave)
traveltime tables, reflection times are determined by the summation of P- and S-wave
times at locations along interfaces, followed by the application of Fermat's principle,
which involves finding the interface locations where the traveltime is stationary.
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