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ABSTRACT

In general, coherency analysis aims to gain the information about a signal which is
recorded on several channels. The kinematical part of the signal is assumed to be
defined by a set of parameters which parameterize a theoretical traveltime model. Us-
ing a coherence measure one can decide if a parameter combination corresponds to
a genuine signal or not, by analyzing the dynamical distribution along a traveltime
trajectory for coherency.
The properties of the coherence measures are crucial for the result of any coherency
analysis. These properties are summarized and explained with standard coherence
measures. An application of a coherency analysis is shown with a real example of the
common-reflection-surface (CRS) method. Some eigenstructure coherence measures
which are results from recent investigations in the field of high-resolution coherence
measures are also mentioned.

INTRODUCTION

Coherency analyses are influenced by many factors and have always to be regarded
as combination of four integral parts: First, it is mainly the quality of the input data
affecting the result of a coherency analysis. Second, the moveout model. It describes
the kinematics of a signal. Third, the coherence measure. The theory of coherence
measures implies some assumptions about the composition of signal and noise of the
input data and assumes ideal alignment of traces through the moveout model. Forth,
the computing capabilities. The implementation of coherency analysis in a computing
environment constitutes an important practical and financial aspect.

Previous Developments

Just after multiple ground coverage methods had gained acceptance within the
petroleum industry multichannel coherence techniques have been employed routinely.
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One of the first methods which has become standard was reported by Schneider
and Backus (1968) and was presented at the 36th Annual International SEG Meet-
ing in Houston, 1966. Their coherence measure is based on the correlation of traces
and constitutes a realization of the familiar stochastic concepts of correlation analysis
(e.g. Montgomery and Runger (1994)) and random processes (e.g. Bendat and Piersol
(1986)) for multichannel seismic data.

The most commonly used coherence measure, even today, is the semblance crite-
rion which was firstly reported by Taner and Koehler (1967). The criterion was later
published by Taner and Koehler (1969) and Neidell and Taner (1971). The measure is
also based on trace correlations but is extended by an energy-normalization scheme.

At about the same time the stacking result of traces was firstly used as coherence
measure. Garotta and Michon (1967) defined the mean of the amplitudes along a
traveltime trajectory as coherence measure.

The intensified use of statistical criteria to improve the resolution of a coherency
analysis has led to some modifications of already existing measures or to independent
developments (e.g. Gelchinsky et al. (1985); Katz (1991); Sacchi (1998)). Morozov
and Smithson (1996) summarized some analysis methods and developed a hybrid mea-
sure combining a phase correlation measure with a statistical hypotheses filter. Fuller
and Kirlin (1992) introduced weighting schemes to improve the resolution of conven-
tional measures.

Recent developments are based on the separation of the eigenstructure of the data
covariance matrix into signal and noise subspaces (Biondi and Kostov, 1989; Key and
Smithson, 1990; Kirlin, 1992). The method exhibits superior resolving power in com-
parison to conventional stack-based measures. Marfurt et al. (1999) used both, the
conventional semblance and crosscorrelation measures as well as eigenstructure mea-
sures to generate seismic coherency cubes for structural interpretation.

COMPARISON OF COHERENCE MEASURES

The decision which coherence measure one should use to analyze the data is supported
by some criteria with wich the performance of coherence measures can be assessed
by. Along with this criteria the decision depends on the knowledge about quality and
signal and noise characteristics of the data, the type of information to be extracted,
the assumptions (or validation of the assumptions) the moveout model is based on, the
way the information is to be extracted (visual or numerical) and on the time, i.e., the
costs, the computation may take.

Besides all these considerations, the coherence measures must proof their appli-
cability in practice, i.e., to a large degree it is still an empirical decision as to which
measure to use.
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Coherence Measure Properties

In any application, coherency analysis is used to extract some information from the
given data. Therefore, the main property of any coherence measure is its resolution
capability determining the accuracy the desired information can be resolved. Resolu-
tion is a general attribute for coherence measures and is further influenced by a set of
special properties as listed below.

Properties of coherence measures:

� Resolving power

� Discrimination threshold

� Separation of events with equal zero-offset time

� Sensitivity to amplitude changes versus offset

� Sensitivity to sign/phase changes versus offset

� Noise level dependency (statistical significance)

� Enhancement of weak signals

� Dynamic range of display

� Stability

� Computational effort

Some of these attributes are interrelated. The discrimination threshold, for example,
can be a visual attribute and depends then on the dynamic range of values a coherence
measure needs for display; however, the visual discrimination threshold may differ
from thresholds numerical search algorithms need to discriminate events.

The separation of events with equal zero-offset time is a challenging task for coher-
ence measures. Theoretical, separation of events is better the wider the spatial range is
chosen. In practice, however, a wider spatial range often collides with the small spread
approximation of theoretical models. One method to improve this compromise is to
introduce offset dependent weighting factors.

The sensitivity of a coherence measure to amplitude, sign or phase changes versus
offset depends on the theoretical properties of each measure.

The noise level dependency rather is based on the practical properties of a coher-
ence measure. For example, the normalized crosscorrelation measure is a statistical
estimate of the normalized crosscorrelation function. The estimate is defined only for
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a limited time range while the crosscorrelation function is defined for infinite records.
The variance of the estimate varies with the length of the time gate, the bandwidth
of signal and noise and with the signal-to-noise ratio (see Bendat and Piersol (1986)).
It is evident that the statistical significance of the estimate shrinks with shorter time
gates. In coherency analysis the operation windows are commonly short, thus the sta-
tistical significance is low. That is, coherence measures must proof their applicability
in practice (see in addition Schneider and Backus, 1968).

The enhancement of weak reflections is affected by the properties of the coher-
ence measure and is normally supported by the normalization of measures. Stacked
amplitude, for example, yields its highest sum for the reflection with the highest am-
plitudes, no destructive summation provided. Semblance, however, theoretically yields
the same result for any scaled version of a signal. It may only yield lower values for
weaker signals because of the reduced statistical significance, i.e., the lower S/N ratio
for weaker reflections.

Normalization reduces the dynamic range for display while with unnormalized
measures the dynamic range is mainly occupied by the largest coherence value ob-
tained for the reflection with the strongest amplitutes.

To extract weak reflections by visual means it may be desirable to reduce the dis-
tance between the coherence values for different events. However, for numerical al-
gorithms which search for local maxima it may be easier to find these maxima if the
separation between the values is as great as possible.

The possible resolution of coherence measures is limited by the discrete parameter
space. If the discretization of the space is too coarse in combination with the resolving
power of a measure an aliasing problem will occur (see Claerbout (1992)). That is, it
is possible that a measure would yield a local maximum for a parameter value that lies
right between two values from the discrete range of values.

The computational effort of a coherence measure becomes a crucial point when
moveout models with three or even more parameter dependencies are used. Any ad-
ditional parameter increases the computation time with a factor equal to the number
of its elements. Therefore, effective measures are needed. Also, one can reduce the
computation time if only selected parameter combinations which yield local maxima
are calculated. This requires numerical search algorithms which must be optimized to
be effective. Although it is generally profitable to interpret the structure of the whole
parameter space, visual examinations are less practicable the more parameters are in-
volved. With modern technologies, however, such as virtual reality cubes, it is possible
to visual investigate three or four-dimensional parameter sets in a reasonable effective
way. In any case, since sophisticated moveout models becomes rather more complex
and recent coherence measures also, the employment of massive parallel computer
systems with highly efficient parallel computer algorithms is a requirement to manage
forthcoming tasks.



243

REAL DATA EXAMPLE

Common-Reflection-Surface (CRS) Method

The common-reflection-surface (CRS) stacking method is applied to utilize as much
traces as possible from a pre-stack data-set (Tygel et al., 1997; Höcht, 1998). For 2-
D seismic, the stacking result is a well illuminated simulated zero-offset section. The
method may also be implemented for 3-D. A traveltime model used within this method
is based on the paraxial ray theory (Bortfeld, 1989; Cerveny, 1987). In the 2-D case,
the moveout function with respect to half-offset (h) and midpoint coordinate (xm) for
inhomogeneous earth models with arbitrary smooth interfaces can be approximated by
a hyperbolic second order Taylor expansion (Schleicher et al., 1993):
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This moveout model is parameterized by the radius of curvature of the normal wave
(RN ), the radius of curvature of the normal-incidence-point wave (RNIP ) and the
emergence angle of both waves (�). This description implies the approximation of the
two emerging wavefronts by circles in the vicinity of surface location x0 (see Hubral
(1983)). Since only the near-surface velocity v0 need to be known, expression (1)
constitutes a macro-velocity model independent formulation of the traveltime.

With model (1) the coherency analysis of a pre-stack data-set (t; xm; h) from a 2-D
survey is in principle performed in the same way as described in the previous chapters.
The only differences to the analysis of a CMP gather with the velocity-parameterized
CMP hyperbola are that we now have three parameters (instead of one) and two spatial
dependencies (instead of one) in the model. Furthermore, if a parameter combination
is fixed, not only for each zero-offset time but for each point in the zero-offset time –
midpoint space (t0; x0) one coherence value is computed.

I want to show a result of a coherency analysis with 31 real CMP gathers which
are from a marine data-set from Mobil Corp. Figure 1 shows one CMP gather of this
record.

Coherency analysis has been performed with moveout model (1) and the semblance
coherence measure at a specified point (t0; x0) of the zero-offset section. The near
surface velocity was set to v0 = 1:48 km/s. The midpoint is x0 = 7:556 km and the
zero-offset time is t0 = 3:62 s. The ranges for the parameters have been chosen as
follows: emergence angle � reached from -15 to +15� with 0.5� increment and the
radius of the NIP-wave (RNIP ) reached from 2.0 to 6.0 km with 0.05 km increment.
Since the radius of the N-wave (RN ) may approach values of plus or minus infinity,
a special range and increment was specified for this parameter: the range of values,
�1:25 � � � +1:25, of the function RN = f(�) with f(�) = � tan(� � �=2)
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Figure 1: Real CMP gather of a ma-
rine data-set.
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(a) Real CMP gather (wiggle format)

was divided into 500 equal parts, i.e., � reached from �1:25 to +1:25 with a linear
increment of 0.005. Thus, the corresponding values of RN reached from �0:33 : : : �
1=+1 : : :+0:33 km. The function f(�) has at � = 0 an infinite jump discontinuity.
For each parameter combination a coherence value was calculated.

Figure 2 shows the resulting coherence values with colors in the [�;�(RN); RNIP ]
space. An absolute maximum of Sc = 0:40 was obtained at � = 0�, � = 0:05 (RN =

20:0 km) and RNIP = 4:15 km. For this values the slices through the coherency
cube are shown. We can examine that the maximum (indicated by red color) is rather
well resolved. The corresponding wavefield attributes may subsequently be used for
stacking or inversion.

EIGENSTRUCTURE COHERENCE MEASURES

Besides correlation or stack-based coherence measures, eigenstructure measures have
reached a considerable use. They are based on the analysis of the eigenstructure of
the data covariance matrix (Biondi and Kostov, 1989; Key and Smithson, 1990; Kirlin,
1992).

In principle, the covariance matrix of the data enclosed by a time gate about the
moveout trajectory of interest is assumed to be an estimator for the model of a covari-
ance matrix which has a particular eigenstructure. The eigenstructure of the model is
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Figure 2: Semblance values (col-
ors) in the [�;�(RN); RNIP ] space
resulted from a coherency analysis
of 31 real CMP gathers with move-
out model (1) at x0 = 7:556 km and
t0 = 3:62 s. The plot shows three
slices through the coherency cube
at � = 0�, � = 0:05 (RN = 20:0

km) and RNIP = 4:15 km. The
range of � was mapped on RN with
the function f : RN = � tan(� �
�=2). The high semblance value
(red) corresponds to a primary re-
flection.
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decomposable into signal and noise subspaces. The signal wavefronts of an observed
wavefield are associated to eigenvectors of the signal subspace and the additive noise
components of the wavefield are associated to eigenvectors of the noise subspace. The
discrimination of the two subspaces is possible since the largest eigenvalues of the co-
variance matrix belong to the signal eigenvectors. Hence, coherence measures based
on the eigenstructure method include eigenvalues or eigenvectors in their formulations.

Eigenstructure measures are also known as high-resolution wavefront measures.
Due to the separation of the noise subspace they are able to account for the noise
associated with nearby and interfering events which, in contrast, reduces the resolution
of stack-based measures (Key and Smithson, 1990).

Signal Space Semblance

Kirlin (1992) used the concept of signal and noise subspace to enhance the established
semblance measure. The new signal space semblance coefficient exhibits a better
resolution than the conventional semblance measure.

In order to express the semblance of the signal subspace, I first give a definition
of the sample covariance matrix and the model covariance matrix which separates the
eigenstructure into signal and noise subspaces. The data within a time gate, N + 1

time samples long, is assigned to vectors uj , k �N=2 � j � k +N=2, such that each
vector contains the data along trajectory tj(xi), i = 1; : : : ;M . The sample covariance
matrix then reads

Ck =
1

N + 1

k+N

2X
j=k�N

2

uju
0
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where u0j is the conjugate transposed of uj .

The semblance criterion can be written as

Sc =
1
0
Ck1

MTr[Ck]
(3)

where Tr[Ck] denotes the trace of the covariance matrix and 1 is a M element vector
with ones. This is just an additional formulation of the conventional semblance mea-
sure. To define an eigenstructure measure, we must make some assumptions about the
composition of the eigenstructure of the covariance matrix.

In general, the eigenstructure of a (M �M) matrix is described by eigenvectors
vi, i = 1; : : : ;M and eigenvalues �i, i = 1; : : : ;M :

Rk =
MX
i=1

�iviv
0
i

If we assume that the sample data of one analysis window contain one transient signal
wavefront, Ck should have one large eigenvalue �1 and the corresponding eigenvector
v1 would constitute the basis of the signal subspace. There would be M � 1 eigenval-
ues left which would all be equal to the noise power �2 (Kirlin, 1992). Under these
assumptions we can define the model of the data covariance matrix as

Rk = (�1 � �2)v1v
0
1 + �2

I (4)

where I is the (M � M) identity matrix. We expect Ck to be an estimator of Rk ,
i.e., EfCkg = Rk. With this definition we can describe the conventional semblance
measure with a further expression:
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Kirlin (1992) suggested a modification of Equation (5) to enhance the semblance
measure. He excluded the noise-space energy from expression (5) to achieve a bet-
ter resolution and introduced a scaling factor. After that, his signal space semblance
criterion takes a very simple form:

SK

c =
j10v1j2 � 1

M � 1
0 � SK

c � 1 (6)

Thus, for each data sample, we have to compute the eigenvector v1 which is associated
with the largest eigenvalue of the sample covariance matrix.

Kirlin (1992) compared the conventional semblance criterion with measure SK

c

with a synthetic example. The enhanced version exhibited a better resolving power
than the conventional one.
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Covariance Measure

The covariance measure proposed by Key and Smithson (1990) constitutes a signal-
to-noise estimate based on the simultaneous estimation of the noise and signal energy
within a data window. The ability of the continuous adaption of the noise and signal
estimates improves the event detection and resolving power of the measure and makes
the measure less sensitive to residual statics and deviations from the chosen moveout
model.

Separating the signal and noise subspace of the covariance matrix as in Equation
(4), the eigenvalue of the signal wavefront can be expressed by

�1 = [M=(N + 1)]Es + �2

where Es is the energy of the signal in one channel. Since all minor eigenvalues
are estimates of the noise power �2, we get an better estimate of the noise power by
averaging the minor eigenvalues:

� = �2 =
MX
i=2

�i

M � 1

Subtracting � from �1 leaves an estimate of the signal energy. Hence, the covariance
measure from Key and Smithson,

Cc = �
�1 � �

�
; (7)

constitutes a weighted signal-to-noise ratio estimate. Note that only �1 needs to be
determined since � = Tr[Ck] � �1. Key and Smithson proposed a log-generalized
likelihood ratio for the equality of the eigenvalues as weighting function:
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Its value reaches zero if no signal is present and infinity if a noise-free signal is present.

Tests of the covariance method show significant improvements in time and pa-
rameter resolution relative to the semblance criterion (Key and Smithson, 1990). The
computation costs of Cc can be reduced by a partial stacking of the traces of a data
window before calculating the covariance matrix.

With additional effort, high-resolution coherence measures can be further im-
proved with statistical procedures assessing the accuracy of statistical estimates. For
instance, Sacchi (1998) combined the covariance measure (Equation 7) with a boot-
strap procedure to achieve additional attenuation of spurious events which results in a
further improvement of high-resolution spectra.
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CONCLUSION

Coherency analysis of seismic data is a common processing step. One important fea-
ture of this transformation, the coherence measure, has been investigated.

Since the beginnings of multichannel coherency analysis, the concepts of correla-
tion and trace stacking have built two classes of standard coherence measures. Differ-
ent aspects of judging a coherence measure have been mentioned. The rating depends
on the area of application. As a rule, best visual interpretable results are obtained by
normalized coherence measures since the dynamic range is critical for display.

However, coherence measures employed in numerical search algorithms should
rather be judged by their ability to determine a local maximum where a signal is
present. The conditions of noise and signal variations have to be considered first,
since they are most critical for the performance of coherence measures.

The resolving power is an important criterion of coherence measures. Some newer
developments of coherence measures aim to improve this aspect. Eigenstructure meth-
ods are based on the simultaneous analysis of the signal and noise subspaces of the
data covariance matrix. They achieve better resolutions, but are more costly to com-
pute. Further methods to improve the resolution are based on the combination of con-
ventional coherence measures with weighting schemes, statistical filters or advanced
statistical decision criteria. The problem of the additional computational effort can be
managed by an efficient algorithmic and hardware-specific implementation of these
methods.

It has been made clear that the demands on coherency analysis techniques will
grow enormously in the future. The coherence measures have to be rapidly com-
putable, because of the increasing number of parameters and dimensions in sophisti-
cated moveout models, and they must meet the requirements on accuracy and smooth-
ness of optimized search algorithms.

Where the results of coherency analyses have to be visual interpreted, the most
efficient visualization techniques are needed. That includes effective color mapping of
coherence and attribute values and immersive visualization techniques, such as virtual
reality cubes.

However, an increasing number of techniques are implemented which shall reduce
the number of interpretation steps. For this automation, reliable and fast search algo-
rithms and high-resolution coherence measures are nedded.

Both implementations of coherency analysis techniques, visual or automatic, de-
mand the massive use of computational power. Thus, not least the developments in
the hardware industry will influence the direction of coherency analysis applications
in seismic industry.
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