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ABSTRACT

This work deals with pulse compression to estimate the SRF, a non-white series, for
inelastic propagation using the Kalman filter, which means deconvolution of non-
stationary stochastic processes, generated by time-variant pulse. We organized a
structure for treating the information simulated by the convolutional model with ad-
ditive geological and local noises. We elaborated experiments to recover the SRF for
several situations, and selected examples to show how to satisfy the requirements of
the model. Specifically, we demonstrate here the necessity for applying an equaliza-
tion low-pass filter to compensate for the amplification under deconvolution of the high
frequency content.

INTRODUCTION

Detailed representations of seismic responses require a relatively complicated model,
and the treatment and processing may use of a group of techniques based on stochastic
properties of the information. Non stationary stochastic processes are the basic char-
acteristics of geophysical data necessary for application of the Kalman method. To
name a few, basic references of seismic applications are, (Bayless and Brigham, 1990;
Crump, 1974; Mendel, 1983, 1990; Robinson, 1999).

Kalman's method is a treatment parallel to the Wiener-Hopf method, and its for-
malism highlights the time variant convolution integral. The solution is by the repre-
sentation of a system of state variables, to transform the Wiener-Kolmogorov integral
equation to linear and non-linear differential equations convenient to numerical calcu-
lations . The problem is divided in two parts; the first one consists of the generation
of the signal, and the second on its evaluation, (Mendel et al., 1979). The deconvolu-
tion exercised here is classified as a statistical, and it is based on the properties of the
recorded signal and of its model representation. The signal model does not decompose
the wavelet and noise into specific components, (Connely et al., 1987).
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The forward model used for the application is historically presented by (Goupil-
laud, 1961) and described,for instance, by (Silvia and Robinson, 1979; Berryman and
Green, 1980; Burridge et al., 1988) based on the propagation of vertical plane waves in
a medium formed by horizontal, perfectly elastic, homogeneous, and isotropic layers.
We define as simple reflectivity function (SRF) the series of distribution of reflection
coefficients, and as the complete reflectivity function (CRF) the Goupillaud impulse
response.

There are two formalisms to study the propagation of an attenuating pulse. The first
admits a viscoelastic medium (Ricker, 1977), and the second admits a medium with
the quality factor Q constant, or almost constant (Futterman, 1962). We introduced
inelasticity by superposing a time variant pulse to the CRF, and the effect is described
by pulse stretching, pulse dispersion, and pulse attenuation. Aki and Richard (1980)
discusses the formulation of these effects. We start from these basic features associated
to the propagation, which result in a continuous change in the form of the transient, in
order to organize the deconvolution process.

The deconvolution operators amplify the spectrum in a differential manner. A diffi-
culty that is always present is how to describe the noise component present in the data,
and one of the most consistent simplifications is the concept of white series, (Berkhout,
1979; Saggaf and Toksoz, 1999).

FORWARD MODEL

The geological ambient is lumped into layers, and the counterpart is the geometry of
a sedimentary basin consisting of a pack of N plane, horizontal, isotropic, and homo-
geneous layers, limited by two homogeneous half-spaces. The layers are numbered
from top to bottom (from 1 to N ), 0 being the upper half-space, and N + 1 the lower
half-space. The thickness of each layer is represented by ei, the speed of wave propa-
gation (compressional or transversal) by vi, and the density by �i. The two-way transit
time in each layer is made unitary, �t = ei=vi = 1. To simulate a model of vari-
able speeds and thickness, layers are inserted with coefficients of reflection= 0 and
of transmission= 1. The source is mathematically admitted as located immediately
above the interface 0. The interfaces are present through their reflection coefficients,
cj , considered as real values, and the problem is now transformed to a physics of in-
terfaces.

The solution of the wave equation is given in terms of the Laplace Z-transform
(LZT), which is a discrete representation. The formulation is a matricial recursive sys-
tem (Robinson and Treitel, 1980; Shapiro and Hubral, 1998), and the transfer function
for the reflection field, Rn(z), is given by the ratio of 2 polynomials

Rn(z) =
Bn(z)

An(z)
=

nX
j=1

"jz
j ; (n = 0; N): (1)
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Bn(z) and An(z) are polynomials given by the following expressions:

Bn(z) = c0Pn(z)�Qn(z) ; and An(z) = Pn(z)� c0Qn(z): (2)

The characteristic polynomials Pn(z) and Qn(z) are calculated in a recursive form
by:

Pn(z) = Pn�1(z)� cnz
nQn�1(z

�1) ; and Qn(z) = Qn�1(z)� cnz
nPn�1(z

�1) :

(3)

The initial values are P0(z) = 1, Q0(z) = 0 and A0(z) = 1. Recursive forms give
the polynomials An(z) and Bn(z) by:

An(z) = An�1(z)� zcnc
�1
n�1[An�1(z)�An�2(z)] + zcncn�1An�2(z) ; (4)

Bn(z) = Bn�1(z)� zcnc
�1
n�1[Bn�1(z)�Bn�2(z)] + zcncn�1Bn�2(z) : (5)

The initial values are: A0 = 1, A1 = 1 + c0c1z, B0 = c0, and B1 = c0 + c1z. The
inverse LZT of Rn(z) gives the temporal series, "j , which is the theoretical estimate
of the SRF. An alternative formula to calculate the CRF for n layers, as given by

Rn(z) = c0 +
nX
j=1

zjcj(1 � c20)(1 � c21) : : : (1� c2j�1)

Aj(z)Aj�1(z)
: (6)

This means that the layer n+ 1 is the lower half space (n = N ). Figure 1.a shows
the non-white SRF for a constructed geophysical model of only N = 33 layers. Figure
1.b shows the unilateral part of the autocorrelation of this SRF. Figure 1.c shows the
CRF response, where we observe the accumulating multiples effect towards the right
side end. These characteristics are treated by Kalman's method, as we look for de-
convolution of the source pulse, or, in other cases, of multiples, (Walden and Hosken,
1985).

TIME VARIANT PULSE

Constant Q: non-dispersive model

The D'Alembert solution to an impulse plane wave is of the general form �(t� x=c)

, where c is the propagation speed, x is the distance axis, and the medium is homo-
geneous, isotropic and perfectly elastic. In an absorbing medium, the wave suffers
attenuation and, consequently, pulse spreading in a non-causal sense. The amplitude
attenuation effect with distance, A = A(x), is expressed by

A(x) = A0 exp

"�!x
2cQ

#
: (7)
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Figure 1: (a) SRF, (b) Autocorrelation of the SRF, (c) CRF.

Q is the specific quality factor, A0 is the reference amplitude, and ! is the circular
frequency. The Fourier transform of the propagating impulse is given by

1Z
�1

�(t� x=c)e�i!t dt = exp

�
i!x

c

�
: (8)

Attenuation is also expressed with the factor �(!) = !=2cQ, in the form
exp[��(!)x].

From the above considerations, the attenuating pulse is given by

p1(x; t) =
1

2�

1Z
�1

exp

"�j!jx
2cQ

#
exp

�
i!

�
x

c
� t

��
d! (9)

Experiments to measure attenuation in solids show that the specific attenuation
factor Q can be considered constant for a frequency band of seismic interest. Q is
considered constant in the present study, and under this specific condition, the solution
of the above integral is

p1(x; t) =
1

�

264 x
2cQ�

x
2cQ

�2
+
�
x
c
� t

�2
375 : (10)
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Figure 2: p1(x; t) for different values of x, and Q = 60. The maximum value is at
t = x=c, and it is even, non-causal, and shows streching with constant c 6= c(!).

The properties of p1(x; t) are: (a) x ! 0, as p1(x; t) ! 1 ; (b) x ! 1, as
p1(x; t) ! 0 . p1(x; t) is plotted in Figure 2 for fixed values of x, and t varying. The
propagating pulse maximizes at x=c = t, and this illustrates the deviation from the
causality principle.

Constant Q: dispersive model

A plane wave, �(x; t), propagating in the x direction, with �(0; t) = 0 for t < 0, is
described by its Fourier component, �(x; !) for x > 0, as

�(x; !) = �(0; !)eik(!)x (11)

The complex wave number, k = k(!), is defined in terms of the phase speed, c(!),
and by the attenuation factor, �(!), in the form

k(!) = !=c(!) + i�(!) : (12)

With H[:] as the Hilbert transform, it is shown that:

!

c(!)
=

!

c1
+H[�(!)] ; and

!

c1
+H[�(!)] = 2Q�(!) : (13)
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Figure 3: p2(x; t) for different values of x, and Q = 60. p2(x; t) = 0 for t < x=c1.
The maximum value is at t = x=c1. The pulse is dispersive, c = c(!), and causal.

For a linear superposition

�(x; t) =
1

2�

1Z
�1

�(0; !)ei[k(!)x�!t] d! : (14)

This is equivalent to the convolution of with

p2(x; t) =
1

2�

1Z
�1

ei[k(!)x�!t] d! : (15)

p2(x; t) is the attenuating function in Figure 3, for fixed values of x and t varying.

Effect on the time variant pulse

The medium is represented by a random function, defined as the CRF, r(t). The con-
volution of r(t) with the time variant source-pulse, w(x; t), generates the transient
response, s(t), being added a random noise, v(t), (Clarke, 1968). The equations that
models the seismic trace are:

s(t) = r(t) �w(x; t) ; and z(t) = r(t) �w(x; t) + v1(t) : (16)
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The time source is represented by the Berlage function.

f(t) = Au(t)tne�t cos(2�f0t+ �0) : (17)

Values for the parameters are as: A = 1, n = 1, f0 = 32:5 Hz, �0 = 30 rd, and u(t)

is the unit-step function, (Aldridge, 1990). The time-variant source-pulse results from
the time convolution of one of the p(x; t) with f(t), according to

w(x; t) =

1Z
�1

f(t)p(x; t� � ) d� : (18)
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Figure 4: Time-distance effect of intrinsic atenuation on the Berlage pulse, showing
stretching for the model c 6= c(!), non dispersive and non causal.

Figure 4 illustrates the result of this convolution, which we describe as pulse
stretching without dispersion. Figure 5 illustrates the effect of intrinsic attenuation
with dispersion. These figures are for different x positions and temporary variations.
The effect of the transfer function of the seismograph is not taken into consideration,
and it can be considered as a deterministic deconvolution. The corrections of the effect
of the free surface on displacement, and of wave front divergence are not either taken
into analysis. Rocha and Leite (1999) described the non-stationary deconvolution used
here.
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KALMAN - WIENER

The integral equation

The general properties of the problem, with respect to non-stacionarity and to data
window, do not satisfy the Wiener-Hopf solution. Standard deconvolution algorithms
result in phase errors because the seismic traces do not need requirements upon which
deconvolution algorithms depend. For this reason, the problem is rewritten in the form
of moving operator according to the Wiener-Kolmogorov theory. The integral has the
time-variant operator , and the generalization is provided in matricial form to include
the multichannel case, and it is given by

x̂(t) =

TZ
t0

h(t; � )z(� ) d� ; (T � � � t0) ; [x(t) � r(t)] : (19)

It satisfies the integral equation

�xz(t; �) =

TZ
t0

h(t; � )�zz(t; �) d� ; (t0 � � � T ): (20)

This equation is difficult to solve for h(t; � ), and it carries inherent difficulties of
integral equations of the first kind. Kalman and Bucy (1961) converted the above
integral equation to linear and non-linear ordinary differential equations adaptive to
solutions by numerical techniques.

Summary of the discrete recursive equations

The application of Kalman's method to a seismic trace, z(t), consists in a sequence of
point-to-point operations, (Rocha, 1998). This sequence is described below in 6 steps.
(1) Initial values:

P (0) = P0 ; x̂(0) = x0 : (21)

(2) Compute matrix P+(k) defined as:

P+(k) = �(k; k � 1)P�(k � 1)�T (k; k � 1) +Q(k � 1) : (22)

where �(k; k � 1) is the state transition matrix. (3) Compute the gain matrix K(k) :

K(k) = P+(k)HT (k)
n
H(k)P+(k)HT (k) +R(k)

o�1
: (23)
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Figure 5: Time-distance effect of intrinsic atenuation on the Berlage pulse, showing
streching for the model c = c(!), dispersive and causal.

(4) Compute the state vector:

x̂�(k) = x̂+(k) +K(k)[z�(k)� z+(k)] ; (24)

x̂+(k) = �(k; k � 1)x̂�(k � 1) ; and z+(k) = H(k)x+(k) : (25)

(5) Compute matrix P �(k) :

P�(k) = P+(k)�K(k)H(k)P+(k) : (26)

(6) Return to step 2 to compute the next sample k + 1 .

Structure of the deconvolution process

A flow diagram is defined from the above equations, and we start identifying the vari-
ables with the non-stationary model. This is also performed in 6 steps described below.

(1) Matrix representation of the seismic pulse: Hji(k) = pj(k; k � i � 1) . The
source signiture can be estimated from the data gates by autocorrelation and Hilbert
transform techniques.
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(2) Definition of the state vector as the SRF:

x(k) = [r(k) r(k � 1) � � � r(k � L+ 1)] : (27)

The initial value of x can be defined as a null vector.

(3) Complete the dynamic equations of the system to establish the recursive process
of generation of the state vector. From Crump (1974) proposal:

r(k) =
LX
i=1

bi(k � 1)r(k � 1) + v2(k � 1) : (28)

v2(k � 1) is theoretically considered as a white stochastic process. This equation
projects the reflection coefficients forward through a weighed sum of L previous coef-
ficients. It is still necessary to define the coefficients bi(k) by a chosen formalism and
experimentation. We can write the model of state variables as,

x(k) = �(k; k � 1)x(k � 1) + gTv2(k � 1) : (29)

The recursive matrix is constructed with the structure:266666664

r(k)

r(k�1)

r(k�2)
...

r(k�L+1)

377777775 =

266666664

b1(k�1) b2(k�1) ��� bL�1 bL(k�1)

1 0 ��� 0 0

0 1 ��� 0 0

...
... ���

...
...

0 0 ��� 1 0

377777775

266666664

r(k�1)

r(k�2)

r(k�3)
...

r(k�L)

377777775+
266666664

1

0

0

...
0

377777775 v2(k � 1)

(30)
(4) The covariance matrix P (k) is defined as an identity to start the algorithm.

(5) The diagonal matrix R(k) represents the variance of the noise associated with
the seismic trace.

(6) The diagonal matrix Q(k) = Efr2(k)g represents the variance of the random
component associated with the reflection coefficients.

To define some variables, mentioned in the 6 steps above, it is necessary to describe
some characteristics of the model as, for example, the geological and local noises, the
distribution of reflection coefficients, and the source signature. The non-existing a
priori information on these characteristics makes it necessary to use techniques for
estimating them from the seismogram.

The theoretical variance of the geologic and local noises, Efv21(k)g, are estimated
from variances measured in the seismogram with noise.

EXAMPLES

Figure 6 shows the physical evolution of the time-variant pulse along the CRF. Figure
7 shows the synthetic seismogram. Under the placed conditions and properties, we



233

consider having a synthetic model with the characteristics of real data.
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Figure 6: CRF and seismogram with time-variant pulse. Related to Figures 1 and 3.

For the following examples we selected different signal/noise ratios, (S=N ), in
order to show the performance of the method. The ratio S=N is measured by the
expression:

S=N = 1=P
PX
i=1

(si � s)2
,

1=P
PX
i=1

(v1i� v1)
2 : (31)

Figures 8 and 9 are examples of deconvolution on the complete traces with a time-
variant pulse, and with different S=R ratios. We observed compression of the source
pulse, and also that the deconvolution performs as a selective filter, with amplification
of the high frequencies. Starting with this conclusion, we applied equalization win-
dows, the selected low-pass Ormsby (LPO), previous to the deconvolution processing,
in order to compensate for the amplification of high frequencies. As a result, we im-
proved the resolution on the filter output, as shown in these figures. Figures 10 and
11 repeat the experiment for a balanced trace obtained with a dynamic gain control
(DGC) function.
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Figure 7: Seismogram with multiples and dispersive time-variant pulse.
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Figure 8: (a) Sinthetic seismogram, S=N = 80:94, (b) Deconvolution without LPO
equalizer, (c) Deconvolution with LPO equalizer.
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Figure 9: (a) Seismogram, S=N = 36:51, (b) Deconvolution without LPO equalizer,
(c) Deconvolution with LPO equalizer.
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Figure 10: (a) Seismogram, S=N = 36:51, (b) Balanced trace by DGC, (c) CRF.



236

0

100

200

300

400

500

600

700

800

     
(a)

In
de

x,
(n

)

0

100

200

300

400

500

600

700

800

     
(b)

0

100

200

300

400

500

600

700

800

    
(c)

Figure 11: (a) Balanced trace, S=N = 36:51 (b) Deconvolution without LPO, (c)
Deconvolution with LPO.
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CONCLUSIONS

The Kalman method, and all its diverse possibilities still, looks as a complicated tech-
nique to be used in a routine basis, or even as an option in the processing layout. The
Kalman operation performs as inteded on synthetic data, allowing the increase of res-
olution. In all experiments we observe that the source-pulse compression is achieved,
but for this it is necessary a low-pass equalizer for resolution. Multiples are not dis-
cernable under the filtering by the pulse and by the deconvolution operator.
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