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ABSTRACT

Perturbation techniques are common tools to describe wave propagation in weakly
anisotropic media. The anisotropic medium is replaced by an average isotropic
medium were wave propagation can be treated analytically and the correction for
the effect of anisotropy is computed by perturbation techniques. This works well for
anisotropies of up to 10%. Some materials (e.g., shales), however, can exhibit a much
stronger anisotropy. In this case a background medium is required which still can
be treated analytically but allows to consider a stronger P-wave anisotropy. In this
paper we present a technique to compute a best fitting ellipsoidal medium to an arbi-
trary anisotropic medium. Elliptical media can still be treated analytically but allow
to consider strong P-wave anisotropy. Corrections from the ellipsoidal medium to the
anisotropic medium are again obtained by the perturbation approach. The averaging
of the arbitrary anisotropic medium can be carried out globally (i.e., for the whole
sphere) or sectorially (e.g., for seismic waves propagating prominently in the vertical
direction). We derive linear relations for the coefficients of the ellipsoidal medium
which depend on the elastic coefficients of the anisotropic medium. Numerical ex-
amples for different rocks demonstrate the improved approximation of the anisotropic
model using the ellipsoidal medium compared to the average isotropic medium.

INTRODUCTION

One approach to deal with the complexity of anisotropic wave propagation is to
use perturbation techniques which are based on the approximation of an anisotropic
medium by a simpler, analytically treatable, reference medium. Differences between
both media are taken into account by adding corrections to the results obtained for the
reference medium. These corrections can be of arbitrary order, theoretically. However,
for practical applications mostly a first-order correction is used (see, e.g., Cervený,
1982). To minimize errors which are inherent in the low-order perturbation approach,
one should choose the reference medium as close as possible to the true medium –
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with respect to the physical properties to be investigated.

The assumption of weak anisotropy in real subsurface structures is often valid and
justifies an approximation by isotropic reference media. Formulas for the best fit-
ting isotropic reference velocity were derived by Fedorov (1968) by minimizing the
norm of differences between elastic coefficients of the anisotropic and the isotropic
reference model and by Sayers (1994) by expanding slowness surfaces into spheri-
cal harmonics. However, media with ellipsoidal shape of the slowness surface and,
therefore, of the group velocity surface, are appropriate for analytical calculations too
and can be chosen closer to the true medium if a stronger velocity differences for the
slow and fast direction are present. Lecomte (1993) computes traveltimes in two di-
mensions (2D) by approximating arbitrary symmetry of anisotropy by ellipsoids (i.e.
ellipses in 2D). Traveltimes computed for this elliptical reference medium are accepted
as traveltimes for the original medium. For this approach all quantities needed for fast
finite-difference (FD) traveltime computation are analytically available. However, to
achieve higher accuracy in case of strong anisotropy Lecomte rather uses orthorhom-
bic reference media, therefore, involving (expensive) numerical calculations. Ettrich
(1998) presents a 3D traveltime tool utilizing (analytically treatable) ellipsoidal media
but compensating for stronger anisotropy by integrating a perturbation scheme into the
finite-difference algorithm.

Recently, Mensch & Farra (1999) presented a scheme for ray tracing in orthorhom-
bic media perturbing from ellipsoidal anisotropy. Their reference medium is an ellip-
soid with main axes being parallel to the main axes of orthorhombic symmetry where
velocities along these directions are chosen identical in both media.

To optimize the applications mentioned above we here address the problem of
finding parameters of a best fitting ellipsoidal reference medium for an arbitrary
anisotropic medium. The fit is performed in the sense that the propagation of P-waves
is best approximated. Since in arbitrary anisotropic media group velocity is an ex-
tremely complicated function of the coefficients of elasticity this aim is synonymous
with approximating the phase velocity best. The ellipsoidal model used by Mensch
& Farra (1999) is a quite obvious one and turns out to be a reasonable choice. We
will call it the “obvious ellipsoid” below. We will, however, demonstrate that more
rigorously derived formulas lead to a superior approximation.

Our solution to derive a best-fitting ellipsoidal medium for a general anisotropic
medium and its accuracy is described in the next sections. Alternatives to the ap-
proach chosen could be based on relations between elastic coefficients that make an
orthorhombic medium ellipsoidal. However, utilizing these relations previously pub-
lished by Burridge et al. (1993) either lead to non-linear relations in elastic coefficients
or to intersecting slowness surfaces (i.e., the same wave type could be attributed to dif-
ferent ellipsoids for different directions).
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Notation

� Wherever it is more convenient we use the Voigt-notation CIJ (capital indices
running from 1 to 6) for the density normalized tensor of elasticity rather than
the four-indices tensor cijkl (non capital indices running from 1 to 3) with the
usual correspondence: 11-1, 22-2, 33-3, 23-4, 13-5, 12-6.

� Averaging a function f is denoted by < f >. For f depending on angle
of azimuth � and angle of inclination � (measured with respect to the ver-

tical) the averaging is defined by < f >= 1
A

2�R
0

�MR
0

f(�; �) sin �d�d� with

A =
2�R
0

�MR
0

sin �d�d� and �M the maximum inclination.

� Normal vectors are defined by: (n1; n2; n3) = (sin � cos �; sin � sin�; cos �) .
� Summation over repeated indices is applied.
� �kl is the Kronecker-delta.

BEST-FITTING ELLIPSOIDAL REFERENCE MEDIUM

Following ray theory one finds for the phase velocity v of rays propagating in general
anisotropic media (Cervený, 1972):

v2 = cjklmnknlgjgm with cjklm density normalized tensor of elast. coef.
nj phase normal vector
gj polarization vector

(1)
This equation is not appropriate for analytical calculations since v2 and gj are eigen-
value and eigenvector, respectively, of an eigenvalue problem. However, for weak
anisotropy the phase velocity of the P-wave is well approximated by ~v if the polariza-
tion vector is substituted by phase normal nj in equation (1):

v2 � ~v2 = cjklmnjnknlnm: (2)

Even if we consider strong anisotropy we will use equation (2) to define the anisotropic
medium. It has be shown previously (Psen ík and Gajewski, 1998), that this assumption
is justified for a broad class of anisotropic models.

For ellipsoidal media the eikonal equation describing the P-wave slowness surface
factorizes into an equation of the form

bv2 = Rjknjnk ; j; k = 1; 2; 3: (3)

The square of phase velocities bv is a simple polynomial of second-order in normal
vector components.
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The problem under consideration is to minimize the difference

I =< (bv2 � ~v2)2 >=< ~v4 > + < bv4 > �2 < bv2~v2 > (4)

between ~v2 of the general anisotropic medium and bv2 of the ellipsoidal medium with
respect to the unknown parameters R11; R22; R33; R12; R13; R23:

@

@Rjk

< bv4 >= 2
@

@Rjk

< bv2~v2 > : (5)

Here, brackets denote averaging over the entire sphere of angles � and �, i.e. maximum
inclination �M = �. We obtain:

< bv4 >= RjkRlm < njnknlnm > (6)

and
< bv2~v2 >= Rijcklmn < ninjnknlnmnn > : (7)

We are using Fedorov's (1968) technique to average the components of the normal
vector (the derivation is not presented here, some details are found in Ettrich et al.
(1999)). Equations for < bv4 > and for < bv2~v2 > are used for the minimization and
after inserting into equation (5) we obtain for the coefficients Rij of the best-fitting
ellipsoid:

R11 =
1
35

(27C11 + 8C12 + 8C13 + 16C66 + 16C55

�4C44 � 3C33 � 2C23 � 3C22)

R22 =
1
35

(27C22 + 8C12 + 8C23 + 16C66 + 16C44

�4C55 � 3C11 � 2C13 � 3C33)

R33 =
1
35

(27C33 + 8C13 + 8C23 + 16C55 + 16C44

�4C66 � 3C22 � 2C12 � 3C11)

R12 =
2
7

(3C16 + 3C26 + C36 + 2C45)

R13 =
2
7

(3C15 + 3C35 + C25 + 2C46)

R23 =
2
7

(3C42 + 3C43 + C14 + 2C56)

(8)

Diagonal elements Rii of the matrix of the best-fitting ellipsoid are influenced by those
coefficients of the anisotropic medium which define an orthorhombic medium while
out-off diagonal elements account for the deviation from orthorhombic symmetry.
Please note that the obvious ellipsoid of Mensch & Farra (1999) has the coefficients
R11 = C11, R22 = C22, R33 = C33 and R12 = R13 = R23 = 0.

Specifying the CIJ for isotropic media with

C iso
IJ =

1

�

0BBBBBBBB@

� + 2� � � 0 0 0

� � + 2� � 0 0 0

� � � + 2� 0 0 0

0 0 0 � 0 0

0 0 0 0 � 0

0 0 0 0 0 �

1CCCCCCCCA
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formula (8) gives the expected result:

R11 = R22 = R33 =
1

�
(� + 2�):

For transversely isotropic (TI) media defined by

CTI
IJ =

1

�

0BBBBBBBB@

� + 2� � �� l 0 0 0

� � + 2� �� l 0 0 0

�� l �� l � + 2� � p 0 0 0

0 0 0 ��m 0 0

0 0 0 0 � �m 0

0 0 0 0 0 �

1CCCCCCCCA
one can get

R11 = R22 =
1

�

�
�+ 2� � 6

35
l� 12

35
m+

3

35
p

�

R33 =
1

�

�
� + 2� � 6

35
l � 12

35
m� 24

35
p

�
:

Perturbation p describes the difference between horizontal and vertical phase velocity
of the TI medium and it is, therefore, the main parameter which affects this difference
in the approximate formulas too. However, even if we have a TI medium with l =

m = 0 and p 6= 0 we obtain an ellipsoid with horizontal and vertical phase velocity
being not equal the original values, i.e., C11 and C33 . The best-fitting ellipsoid derived
here does not equal an ellipsoidal input model. Reason is that we used a different
ansatz than the one used by Burridge et al. (1993). In their approach the ellipsoidal
approximation of parameters of an orthorhombic medium is explicitly considered.

ACCURACY OF GLOBAL APPROXIMATION

We consider media of two different symmetries to illustrate the accuracy of approxi-
mation (8). Firstly, we discuss transversely isotropic (TI) media, a shale and a mud-
shale, both selected from the table in Thomsen (1986). Secondly, we discuss a triclinic
sandstone. Coefficients of elasticity are:

TI shale
� = 0:2, � = �0:0750BBBBBBB@

15:96 6:99 6:06 0:00 0:00 0:00

15:96 6:06 0:00 0:00 0:00

11:40 0:00 0:00 0:00

2:22 0:00 0:00

2:22 0:00

4:48

1CCCCCCCA
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TI mudshale
� = 0:034, � = 0:2110BBBBBBB@

15:87 �1:91 15:67 0:00 0:00 0:00

15:87 15:67 0:00 0:00 0:00

14:86 0:00 0:00 0:00

8:12 0:00 0:00

8:12 0:00

8:87

1CCCCCCCA

triclinic sandstone0BBBBBBB@

4:95 0:43 0:62 0:67 0:52 0:38

5:09 1:00 0:09 �0:09 �0:28

6:77 0:00 �0:24 �0:48

2:45 0:00 0:09

2:88 0:00

2:35

1CCCCCCCA
(Numbers in (km=s)2.)

In terms of Thomsen parameters both TI media are quite different, exhibiting
strong P-wave anisotropy and a large positive anellipticity (� � �) for the shale while
horizontal and vertical velocity are similar for the mudshale but anellipticity is large
and negative. For the triclinic sandstone velocity surfaces are more irregular (see fig-
ures below) than could be guessed here from the relatively small non-orthorhombic
coefficients.

Coefficients for the best-fitting ellipsoids using equation (8) for all examples are
listed below:

shale mudshale sandstone0B@ 15:42 0:00 0:00

15:42 0:00

9:95

1CA
0B@ 18:71 0:00 0:00

18:71 0:00

22:47

1CA
0B@ 5:10 �0:05 0:27

5:08 0:27

6:88

1CA

Non-diagonal elements accounting for deviation from orthorhombic symmetry oc-
cur only for the approximation of triclinic sandstone. Diagonal elements are quite
close to C11, C22, and C33, respectively, of the original models for the TI shale and
the triclinic sandstone whereas we observe large differences for the TI mudshale. Rea-
son is the strong negative anellipticity which has the effect that velocities are highest
around the diagonal directions. To approximate these velocities well the ellipsoid has
to be blown up resulting in a severe misfit for vertical and horizontal propagation (see
also Figure 1). Figure 1 displays different phase velocities for the shale (left-hand side)
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and the mudshale (right-hand side) while Figure 2 is the corresponding figure for the
sandstone for azimuth 0 deg. (left-hand side) and azimuth 60 deg. (right-hand side).

Black solid lines display phase velocities of the best fitting ellipsoid while the
slightly differing dotted curves show phase velocities of the exact, approximate,
average isotropic and obvious models. Please, note the proximity of the exact and
approximate phase velocities, which justifies the ansatz to fit the ellipsoidal model to
the approximate model instead of the exact model even in case of strong anisotropy
(see also the remark after Eq. 2). It is obvious from the figures, that the ellipsoidal
approximation gives a much better approximation to the exact model than the best
isotropic approximation usually applied in perturbation techniques. Without any
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Figure 1: Plot of phase velocities for TI-Shale (left) and Mudshale (right). Exact phase
velocity (exact), approximate (approx.) phase velocity, best isotropic approximation
(best iso), best ellipsoidal approximation (best elli.), obvious ellipsoid (obvious).
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Figure 2: Phase velocities for triclinic sandstone along a 0 (left) and 60 deg. profile
(right). For further explanations see Fig. 1.

mathematics the parameters for an ”obvious” ellipsoidal medium are obtained by just
setting R11 = C11, R22 = C22, and R33 = C33. For TI media such a choice leads to
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exact velocities for the horizontal and vertical direction. However, Figures 1 and 2
and the following table show that in average the derived formulas give best results.

shale mudshale sandstone

ref. medium average rel.
err. of
phase velocity

best fitting ellipsoid 1:4%

”obvious” ellipsoid 2:8%

isotropic 5:7%

average rel.
err. of

phase velocity
5:3%

12:4%

6:1%

average rel.
err. of

phase velocity
2:1%

2:5%

4:7%

In particular for the mudshale the “obvious” ellipsoid is not a good choice where
even the best-fitting isotropic medium (abbreviated as “best iso.” ) gives better results.
The formulas for the best-fitting ellipsoid seem to give an especially good approxima-
tion for the TI shale with strong positive anellipticity while for the triclinic medium the
better accuracy is less clear from Figure 2 but proven from the previous table. Note,
that differences are stronger weighted the closer they are to horizontal direction of
propagation. However, this property, inherent in the averaging formula owing to factor
sin �, explains the disadvantage of Eq. (8). While exhibiting an overall best fit it is
near-vertical directions where the largest errors occur and where it is worse compared
to the ”obvious” ellipsoid. If we restrict the averaging to a sector or cone around the
vertical direction, this disadvantage can be overcome.

MODIFICATION OF THE METHOD

Motivated by the results of the previous section we now modify the algorithm to allow
to select the angular section of interest where the fit should be best, e.g., within a cone
or sector around the vertical axis. We, therefore, carry out the averaging in the form
< bv4 >=< RjkR��njnkn�n� > and < bv2~v2 >=< R��cjklmn�n�njnknlnm > rather
than to extract coefficients of elasticity from the averaging as done in equations (6)
and (7). We can change the order of first differentiating with respect to Rij and then
integrating over the angular section for the averaging. The minimization (see equation
5) becomes: *

R��n�n�
@Rklnknl

@Rij

+
=

*
c��kln�n�nknl

@Rklnknl

@Rij

+
: (9)

With the definition Bij := (@Rklnknl)=@Rij equation (9) reads for each of the six
combinations i = (1; 2; 3); j = (1; 2; 3):

R��

2�Z
0

�MZ
0

n�n�Bij sin �d�d� = c��kl

2�Z
0

�MZ
0

n�n�nknlBij sin �d�d�: (10)
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�M is the maximum angle of inclination, i.e. the opening angle of the conical section
within the anisotropic medium should be approximated by the ellipsoid. It is not too
cumbersome to carry out all the integrations by hand. With the recursive definition

S1 = 1� cos �M ; S3 =
2
3S1 � sin2 �M cos �M

3

S5 =
4
5S3 � sin4 �M cos �M

5 ; S7 =
6
7S5 � sin6 �M cos �M

7

(11)

we finally obtain equations for determining the Rij for the sector or cone of interest:0B@
3
4
S5

1
4
S5 S3 � S5

1
4
S5

3
4
S5 S3 � S5

S3 � S5 S3 � S5 2S1 � 4S3 + 2S5

1CA
0B@ R11

R22

R33

1CA =

0B@ b1
b2
b3

1CA

R12 =
(4C45 + 2C36)(S5 � S7) + (C16 + C26)S7

S5

R13 =
(C46 +

1

2
C25 +

3

2
C15)(S5 � S7) + 2C35(S3 � 2S5 + S7)

S3 � S5

R23 =
(C56 +

1

2
C14 +

3

2
C24)(S5 � S7) + 2C34(S3 � 2S5 + S7)

S3 � S5

(12)

with

b1 =
5
8C11S7 +

1
8
C22S7 + C33(S3 � 2S5 + S7)+

1
8(2C12 + 4C66)S7 +

3
4(2C13 + 4C55)(S5 � S7)

1
4(2C23 + 4C44)(S5 � S7)

b2 =
1
8C11S7 +

5
8C22S7 + C33(S3 � 2S5 + S7)+

1
8(2C12 + 4C66)S7 +

1
4(2C13 + 4C55)(S5 � S7)+

3
4(2C23 + 4C44)(S5 � S7)

b3 =
3
4C11(S5 � S7) +

3
4C22(S5 � S7) + 2C33 (S1 � 3S3 + 3S5 � S7)+

1
4(2C12 + 4C66)(S5 � S7) + (2C13 + 4C55)(S3 � 2S5 + S7)+

(2C23 + 4C44)(S3 � 2S5 + S7)

(13)

Note that the coefficients of the best-fitting ellipsoid defined by equations (11), (12),
and (13) depend on the same elastic coefficients of the anisotropic medium as in equa-
tion (8). Now, the weights become �M -dependent. For �M = � we obtain the same
solution as with Eqs. (8).
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ACCURACY OF SECTORIAL APPROXIMATION

We now apply equations (11)-(13). Compared to Figures 1 and 2, Figures 3 and 4, re-
spectively, clearly demonstrate the improvement within a cone of 30 or 45 deg. around
the vertical when restricting the averaging to the corresponding interval of angles.
For applications where a 30 deg. cone of propagation is sufficient even the strongly
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Figure 3: Phase velocities for TI-Shale (left) and Mudshale (right) optimized for a 30

deg. cone (elli. 30) and a 45 deg. cone (elli. 45). For further explanations see Fig. 1.

non-orthorhombic triclinic sandstone is well approximated (Figure 4). However, it
is important that in case of an angular restriction no propagation outside the limited
range of directions should be included in possible applications because the approxi-
mation degrades here. Again, it is even more obvious for the sectorial approximation
that the ellipsoidal model is a much better approximation to the exact medium than the
average isotropic model. Thus, perturbation techniques using the ellipsoidal approx-
imation as a background medium will perform superior to the isotropic background
medium, particularly if a strong P-wave anisotropy is present.

CONCLUSIONS

Coefficients for the approximation of an arbitrary anisotropic medium by an ellipsoidal
medium were derived. Numerical examples have demonstrated the better accuracy of
the ellipsoidal model when compared with the average isotropic model. The approx-
imation is particularly superior if the averaging is carried out in the sector of interest
(i.e., for seismic wave propagating prominently in the vertical direction). The ellip-
soidal approximation allows the use of perturbation techniques even in situations of
strong P-wave anisotropy (e.g., for shales). Using the ellipsoidal approximation as a
background medium allows the application of the perturbation approach to a wider
class of anisotropic models without nearly the same computational efficiency.
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Figure 4: Phase velocities for triclinic sandstone along a 0 (left) and 60 deg. profile
(right) optimized for a 30 deg. cone (elli. 30) and a 45 deg. cone (elli. 45). For further
explanations see Fig. 1.
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Psen ík, I., and Gajewski, D., 1998, Polarization, phase velocity and nmo velocity of
qp-waves in arbitrary weakly anisotropic media: Geophysics, 63, 1754–1766.



222

Sayers, C. M., 1994, P-wave propagation in weakly anisotropic media: Geophys. J.
Int., 116, 799–805.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966.
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