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ABSTRACT

For a central ray in an isotropic elastic or acoustic media, traveltime moveouts of
rays in its vicinity can be described in terms of a certain number of parameters that
refer to the central ray only. In 2-D propagation, the traveltime expressions depend
on three parameters directly related to the geometry of the unknown model in the
vicinity of the central ray. We present a new method to extract these parameters out of
coherency analysis applied directly to the data. It uses (a) fast one-parameter searches
on different sections extracted from the data to derive initial values of the parameters,
and (b) the application of a Spectral Projected Gradient optimization algorithm for
the final parameter estimation. The results obtained so far indicate that the algorithm
may be a feasible option to solve the corresponding, harder, full three-dimensional
problem, in which eight parameters, instead of three, are required.

INTRODUCTION

Traveltimes of rays in the paraxial vicinity of a fixed central ray can be described
by a certain number of parameters that refer to the central ray only. They are valid
independently of any seismic configuration.

Assuming the central ray to be the primary zero-offset ray, the number of parame-
ters are three and eight, for two- and three-dimensional propagation, respectively. For
2-D propagation, the parameters are the emergence angle of the normal ray and the
wavefront curvatures of the normal and normal-incident-point eigenwaves, as intro-
duced in Hubral (1983). All parameters are defined at the point of emergence of the
central ray, called the central point. This point coincides with a common midpoint
(CMP), where the simulated zero-offset trace is to be constructed.
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The use of multi-parametric traveltime approximations for imaging purposes is a
well-investigated subject. Main contributions are Multifocusing (see, e.g., Gelchinsky
et al., 1997, for a recent description), PolyStackTM (see, e.g., de Bazelaire et al., 1994)
and the very recent Common Reflection Surface (CRS) method (see, e.g., Hubral et al.,
1998). These methods vary in general on two aspects, namely, the multi-parametric
traveltime moveout formula that is used, as well as in the strategy to extract the travel-
time parameters from coherency analysis applied on the multi-coverage data.

The basic lines of the CRS approach are the choice of the hyperbolic traveltime
function (see Tygel et al., 1997), and the strategy of breaking the original three-
parameter estimation problem into simpler ones involving one or two unknowns. As
shown in Müller (1999), quick estimations for the three parameters are obtained by
simple one-parameter searches performed on CMP and CMP-stacked sections of the
data.

To improve the accuracy of the estimations, as needed, e.g., for the construction of
velocity models, a natural idea is to use the previously obtained parameter estimations
as initial values for an optimization scheme directly applied to the multi-coverage data
problem. Following this philosophy, Müller (1999) obtained significantly better results
on synthetic data examples, however, at a high computational cost.

In this work, we present a new optimization strategy so as to achieve more accurate
results than the ones derived by purely one-parameter searches, while maintaining
the computational effort at a reasonable level. This becomes a crucial matter when
real-data applications are envisaged. The method is illustrated by its application on a
synthetic example, where the various aspects of the algorithm can be better understood.

HYPERBOLIC TRAVELTIME EXPANSION

As shown in Figure 1, let us assume a fixed target reflector � in depth, as well as a
fixed central point X0 on the seismic line, considered to be the location of a coincident
source- and -receiver pair S0 = G0 = X0. The corresponding zero-offset reflection
ray, X0 NIP X0, will be called from now on the central ray. It hits the reflector at
the normal-incident-point (NIP). For a source-receiver pair (S;G) in the vicinity of
the central point, we consider the primary reflected ray SRG relative to the same
reflector �. We use the horizontal coordinates x0, xS and xG to specify the location
of the central point X0, the source S and the receiver G, respectively. We find it
convenient to introduce the midpoint and half-offset coordinates xm = (xG+xS)=2�x0
and h = (xG�xS)=2. We consider the hyperbolic traveltime expression as in Tygel et
al. (1997)

T 2(xm; h;�0;KN ;KNIP ) =

 
t0 +

2xm sin�0

v0

!2

+
2t0 cos

2 �0

v0
(KN x2m+KNIP h2) ;

(1)
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where t0 is the zero-offset traveltime and �0 is the angle of emergence at the zero-offset
ray with respect to the surface normal at the central point. The quantitiesKN andKNIP

are the wavefront curvatures of the normal N-wave and the NIP-wave, respectively,
measured at the central point (Hubral, 1983).

Figure 1: Physical interpretation of
the hyperbolic traveltime formula
parameters: Emergence angle, �0,
normal-wave curvature, KN , and
normal-incident-point-wave curva-
ture, KNIP .
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For particular source-receiver gathers, the hyperbolic traveltime formula (1) can be
simplified. The most used configurations are:

The common-midpoint configuration: Setting the fixed midpoint to coincide
with the central point, the CMP-traveltime expression can be readily obtained from
the hyperbolic traveltime (1) by simply placing xm = 0 in that formula. We find the
1-D expression

T 2
CMP (h; q) = t20 +

2t0 h
2q

v0
; (2)

on the combined parameter q = cos2 �0KNIP .

The zero-offset configuration: The zero-offset traveltime expression is readily
obtained setting h = 0 in the hyperbolic traveltime (1). We find the 2-D expression

T 2
ZO(xm;�0;KN ) =

 
t0 +

2xm sin�0

v0

!2

+
2t0 cos

2 �0

v0
KN x2m ; (3)

on the original parameters �0 and KN .

The common-shot configuration: Placing the common source to coincide with
the central point, the common-shot traveltime expression is derived by setting xm = h

in the hyperbolic traveltime (1). As a result, the traveltime expression becomes the
2-D formula

T 2
CS(h;�0; �) =

 
t0 +

2h sin �0

v0

!2

+
2t0 cos

2 �0

v0
� h2 ; (4)
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depending on the original and combined parameters �0 and � = KN + KNIP ,
respectively.

The common-offset configuration: The expression of the common-offset trav-
eltime coincides with the general hyperbolic traveltime (1) upon the consideration of
h = constant.

FORMULATION OF THE PROBLEM AND ITS SOLUTION

The multi-coverage data consists of a multitude of seismic traces U(xm; h; t) cor-
responding to source-receiver pairs located on a given seismic line by coordinate
pairs (xm; h), and recording time 0 < t < T . Our problem is the following:

Consider a dense grid of points (x0; t0), where x0 locates a central
point X0 on the seismic line and t0 is the zero-offset traveltime. For each
central point X0, let the medium velocity v0 = v(x0) be known. From the
given multi-coverage data, determine the corresponding parameters �0,
KN and KNIP , for any given point (x0; t0) and velocity v0.

One approach to solve this problem could be the application of a multi-parameter
coherency analysis to the data, using the traveltime formula (1) to a number of selected
traces around X0 and for a suitable time window around t0. The desired values of the
parameters are expected to be close to the ones for which the maximum coherence is
achieved.

Given the seismic traces U(xm; h; t), and the vector of parameters P =

(�0;KN ;KNIP ), the coherency measure called semblance is given by

S =

P
[
P
U(xm; h; T (xm; h;P ))]

2

M
PP

[U(xm; h; T (xm; h;P ))]2
; (5)

where T (xm; h;P ) = T (xm; h;�0;KN ;KNIP ) is the traveltime expression (1) and
M is the total number of selected traces. The inner summation is performed over all
selected traces, and the outer one is performed over a given time window around t0. For
each given pair (x0; t0), the objective is to find the global maximum of the semblance
function (5) with respect to the parameters �0, KN and KNIP . These parameters are
restricted to the ranges ��=2 < �0 < �=2 and �1 < KN ;KNIP <1.

To compute the global maximum of the semblance function, we propose the strat-
egy described by the flow chart in Figure 2. In the first part we obtain initial values of
the parameters. In the second part, an optimization process employs these parameters
as initial values to produce the final estimations. Following the same lines as Müller
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Figure 2: Flow-chart description of the parameter-estimation strategy. First part: Com-
putation of initial estimations by one-parameter searches. Second part: Optimization
method applied to common-shot sections for final parameter estimation.



204

(1999), the first part consists of two steps, namely, (a) a one-parameter search of the
combined parameter q, performed on the CMP sections with the help of the traveltime
expression (2), and (b) two one-parameter searches for �0 and KN , performed on the
CMP-stacked section realized using the previous q-parameter. The CMP-stacked sec-
tion is considered as an approximate zero-offset section, so the traveltime expression
(3) is used.

The optimization process of the second part �0 and � = KN +KNIP . For this pur-
pose, we use the Spectral Projected Gradient (SPG) method (see Birgin et al. (1999))
applied to common-source sections. We use the traveltime expression (4) to obtain the
original parameter �0 and the combined parameter �. Finally, using the relationships
KNIP = q= cos2 �0 andKN = ��KNIP all the desired parameters can be determined.

A SYNTHETIC EXAMPLE

Referring to Figure 3, we consider the synthetic 2-D model of three smoothly curved
reflectors separating different homogeneous acoustic media. Assuming unit density,
the constant velocities are: c1 = 1400m/s above the first reflector, c2 = 2000m/s
between the first and the second reflector, c3 = 3400m/s between the second and the
third reflector, and, finally, c4 = 5500m/s below the deepest reflector. The input data
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Figure 3: Synthetic two-dimensional model of four homogeneous acoustic layers sep-
arated by smooth curved interfaces. Unit density is assumed in all media.

for our experiment are 334 CMP seismic sections, centered at coordinates x0 varying
from 3010m to 13000m. Each CMP gather has 84 traces with half-offsets varying from
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0m to 2490m. All traces are sampled within the range of 0s � t � 6s, at a sample rate
of 4ms. Noise was added to the data with a ratio signal:noise of 7:1.

Initial estimation – the combined parameter q: We start with the estimation of the
combined parameter q, performed as a one-parameter search on the CMP gathers. The
situation is similar to a conventional NMO-velocity analysis. For each fixed midpoint
x0, we determine, for each time sample t0, the value of q that yields the best semblance
in the CMP gather. For this computation, we use the CMP-traveltime formula (2) that
depends on the q-parameter only. This leads to the construction of two auxiliary CMP-
related sections, namely, the q-section, which consists of assigning to each (x0; t0) its
corresponding q-parameter, and the semblance section in which the semblances are
assigned. An extensive use of these auxiliary sections is described in Gelchinsky et al.
(1997).

The q-search may be refined for greater accuracy. We consider the estimated q-
parameters for which the current semblance values exceed a threshold that is inter-
actively selected by the user. This provides an ensemble of q-values concentrated on
a smaller range (in our case three orders of magnitude less than the original range
search). It allows us to perform a new search, restricted to this smaller range divided
into a much finer grid. Figure 4 shows the semblance section obtained after the re-
finement. The employed threshold semblance values were 0.13 and 0.15 for the time
intervals 0s < t0 < 2:5s and 2:5s < t0 < 6s, respectively. The very clear semblance
section of Figure 4 can be looked upon as a simulated zero-offset section. The theoret-
ical and estimated values of the combined parameter q along the reflectors are shown
in Figure 5. The accurate results confirm the expectations of employing an exhaustive
search to solve a 1-D problem. The obtained values of the q-parameter will be retained
during the whole process.

Initial estimation – the parameters �0, KN and KNIP : Using the just estimated
q-values in the CMP-traveltime formula (2), we construct (like in conventional NMO-
stacking) the corresponding CMP-stacked section. This will now be used as an approx-
imation of a zero-offset section. To extract the emergence angles �0 and the N-wave
curvatures KN , we proceed as follows: (a) Using the zero-offset traveltime expression
(3), we first set KN = 0 and perform, for each pair (x0; t0), a one-parameter search for
�0 between ��=2 and �=2; (b) Setting the obtained value of the �0 parameter in the
same zero-offset traveltime expression (3), we perform a further one-parameter search,
this time for the parameter KN . Use of the above results, together with the relation-
ship KNIP = q= cos2 �0, completes the initial estimations of the parameters �0, KN

and KNIP .
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Figure 4: Semblance section obtained as a result of the one-parameter search of the
combined parameter q. Note the excellent resolution of the section.

Optimization procedure – Final estimations: The second part of our method con-
sists of the application of an optimization algorithm to common-shot sections. We
use the common-shot traveltime formula (4), depending on the two parameters �0 and
� = KN +KNIP . From the previous initial estimation of the parameters, we apply the
SPG optimization method (see Birgin et al., 1999) to achieve the final estimations.

Figures 6, 7 and 8 show the comparison between the theoretical and optimized pa-
rameters. We can recognize that the method provides generally accurate estimations in
most of the section. We note, however, that the method also yields inaccurate results
at various points within the range [6000m,8000m]. These points are characterized by
small coherence measures and, for that matter, have not been displayed in Figures 6, 7
and 8. The reasons for those small coherence values may be (a) lack of illumination:
use of end-on, common-shot gathers may not be the most adequate choice of illumina-
tion for the whole section. (b) Caustics: the same region contains a caustic due to the
second reflector.

A possible improvement of the results could be obtained upon the combined use
of traces that belong to different gathers (e.g, split-spread common-shot and common-
offset gathers). The use of additional gathers may be recommended to overcome these
difficulties. These aspects are under investigation.



207

4000 6000 8000 10000 12000

5

10

15
x 10

−4

First reflector

4000 6000 8000 10000 12000

1.5

3.5

x 10
−4

Second reflector

C
om

bi
ne

d 
pa

ra
m

et
er

  q

4000 6000 8000 10000 12000
0

1

2

x 10
−4

Third reflector

Central Ray Coordinate (m)

Figure 5: Combined parameter q: Theoretical curve (solid line) and estimated values
(small x) obtained after the one-parameter search on the CMP sections.
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Figure 6: Emergence angle �0: Theoretical curve (solid line) and estimated values
(small x) obtained after the two-parameter optimization on the common-shot sections.
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Figure 7: N-wave curvature KN : Theoretical curve (solid line) and estimated values
(small x) obtained after the two-parameter optimization on the common-shot sections.
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Figure 8: NIP-wave curvature KNIP : Theoretical curve (solid line) and estimated
values (small x) obtained after the two-parameter optimization on the common-shot
sections.
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CONCLUSIONS

We have proposed a new algorithm to determine the traveltime parameters out of co-
herency analysis applied to 2-D multi-coverage seismic data. Following the general
philosophy of the CRS approach, we used the hyperbolic traveltime moveout together
with a sequential application of one-parameter searches, followed by a two-parameter
optimization scheme. The restriction of the two-parameter optimization to common-
shot sections leads to a fast and generally accurate estimation of all three parameters.

We applied the algorithm to a three-reflector synthetic example. Although this is
a simple model, it presents already some of the basic complications of more realistic
situations. The obtained results were very encouraging, confirming our expectations
concerning accuracy improvements at reasonable computational costs. Next steps will
be to test the new algorithm on more complex models and to real data sets.
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