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ABSTRACT

Modeling a reflected wave by the Kirchhoff-Helmholtz integral consists of an integra-
tion along the reflector. By this, one sums up the Huygens secondary-source contribu-
tions to the wavefield attatched to the reflector at the observation point. The proposed
asymptotic inverse Kirchhoff-Helmholtz integral, by which this well-known modeling
process is inverted, works in a completely analogous way. It consists of an integral
along the reflection traveltime surface of the reflector. For a point on the reflector,
one sums up (integrates) the reflected-wave contributions attached to the respective
reflection-traveltime surface associated with the related source-receiver pair. In this
way, the new integral is a more natural inverse to Kirchhoff-Helmholtz forward mod-
eling integral than the conventional Kirchhoff migration integral. Like the latter, the
new inverse integral reconstructs the Huygens sources along the reflector, thus provid-
ing their positions and amplitudes. This enables the realization of important aspects
of wave inversion closely related to, but nevertheless quite different from, the conven-
tional Kirchhoff migration process well-known in seismic reflection imaging.

INTRODUCTION

The classical Kirchhoff integral solution of the acoustic wave equation describes the
response of a given wavefield (e.g. originating from a well-specified source), mea-
sured upon a closed surface, at a given observation point within the volume enclosed
by that surface (see, e.g., Bleistein, 1984). In different approximations, the Kirchhoff
integral provides a well-known useful tool to numerically simulate the wave propa-
gation. For instance, the wavefield originating from a point source and primarily re-
flected from a smooth reflector overlain by a smooth inhomogeneous acoustic medium
can be described by the Kirchhoff integral in the so-called single-scattering, high-
frequency approximation (see, e.g., Bleistein, 1984; Frazer and Sen, 1985). The re-
sulting Kirchhoff-Helmholtz integral describes then the reflected elementary waves as
a superposition of Huygens secondary point sources distributed along the reflector. A
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useful picture of this process is to imagine that the reflector is made up by point-source
diffractors that are idividualy excited by the incoming of the incident wavefield. The
intensity of each of these point diffractors along the reflector, regarded a weight in the
integral, is specified by the so-called Kirchhoff-Helmholtz approximation. It are given
by the product of the incident field and the plane-wave reflection coefficient relative to
the incident ray that connects the source to the diffraction point, all these quantities be-
ing computed at this point. The weavefields radiated by all Huygens, point-diffraction
sources contribute in form of a constructive interference to the wave measured at the
receiver. The asymptotic evaluation of the Kirchhoff-Helmholtz integral leads to the
familiar zero-order ray theory approximation (or geometrical optics solution) of the
reflected wavefield at the receiver (Tygel et al., 1994, see also references there). Upon
proper modification of the weight function along the Kirchhoff-Helmholtz integral, a
similar representation integral can be constructed to account for the propagation of
diffraction waves at edges and corners at the reflector (see, e.g, Klem-Musatov and
Aizenberg, 1984; Tygel and Ursin, 1998). By variation of the locations of the sources
and receivers according to a chosen measurement configuration, a seismic multicov-
erage experiment can be simulated. The primary reflections due to the given reflector,
align along the corresponding, so-called reflection-traveltime surface. This surface can
be interpreted as the kinematic image of the reflector in the seismic record section as-
sociated with the chosen configuration. In other words, we can say that this surface
implicitly results from the evaluation of the Kirchhoff-Helmholtz integral. In the same
way, the wave observed along this surface dynamically images the Huygens sources.

The Kirchhoff-Helmholtz integral is largely used to accurately model primary re-
flections in smoth layered models bounded by smooth interfaces (reflectors). A natural
guestion that arises is whether a transformation exists that performs the opposite task of
the Kirchhoff-Helmholtz integral. In other words, this inverse would hav@rnemati-
cally and dynamically reconstruttie reflector. This would have to involve a weighted
superposition of the observed elementary wave along the reflection traveltime surface
of the searched-for reflector. To kinematically and dynamically reconstruct the reflec-
tor means to asymptotically recover the reflector location together with the plane-wave
reflection coefficient and each point of the reflector. In the seismic literature, this is
commonly called thérue amplitudeat all reflector points.

The problem of reonstructing a subsurface reflector out of seismic reflection records
on a given configuration is called in the seismic literaturediagth-migration problem
(see, e.g. Stolt and Benson, 1986). The depth migration method that is traditionally
accepted as an inverse to the Kirchhoff-Helmholtz integral is the Kirchhoff depth mi-
gration (Schneider, 1978, Stolt and Benson, 1986). The Kirchhoff depth migration
is realized upon summing up contributions of the reflection data along auxiliary dif-
fraction surfaces constructed on an a priori, given reference model. The basic idea
of the Kirchhoff depth migration is that points on the reflector give rise to consructed
diffraction traveltime surfaces that are tangent to the corresponding observed primary
reflection traveltime surfaces. Because of phase coherence along the tangential region,
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the summation process accumulates constructively interfering signals to provide a sig-
nificantly larger amplitude than the counterpart amplitudes obtained when the summa-
tion process is carried out for point-diffraction surfaces away from the reflectors. Each
difference diffraction traveltime surface refers to a specific point in depth, on which
the resulting summed amplitude is assigned. Performing the above procedure to a fine
grid on depth provides the subsurface depth-migration image.

From the above descriptions of the Kirchhoff-Helmholtz integral and the Kirch-
hoff depth migration, we readily realize that both methods are structurely very differ-
ent. The former is anodeling procesthat uses the actual reflector as a superposition
integral. The latter is ammaging processghat superposes the data along prescribed sur-
faces constructed on a reference model. As shown in Hubral et al. (1996) and Tygel
et al. (1996), the Kirchhoff depth migration is the (asymptotic) inverse of a differ-
ent operation calledemigration realized upon summation on depth-domain surfaces
(isochrones) constructed on the same reference model.

So far, the Kirchhoff-Helmholtz integral, a summation operator along a given re-
flector, lacks a structurely similar (asymptotic) inverse operation. This should have
the form of a summation operation along the reflection traveltime corresponding the
reflector, assuming, of course, the same configuration of source- and -receivers pairs.

This is being set up in this paper by exploring the dual properties between the
given reflector and its corresponding traveltime surface. The resulting new inverse
Kirchhoff-Helmholtz integral is then completely analogous to the well-known, forward-
modeling, Kirchhoff-Helmholtz integral.

FORMULATION OF THE PROBLEM

To formulate the Kirchhoff-Helmholtz integral transformation pair, we make the fol-
lowing assumptions about the model and the 3-D wave-propagation:

¢ We assume the model of a smoothly varying inhomogeneous acoustic medium,
bounded above and below by two smooth surfaces. The upper one is the mea-
surement surfac&,, and the lower one is the target reflector The target
reflectory is parameterized as = Y(x), in which x is the two-dimensional
horizontal coordinate vector varying on the spatial apertureZsePoints on
the reflector: will be generally denoted byl = M(x) = (x,z = X(x)),
parameterized by in £.

e A dense distribution of sources and receivers is specified in a certain area of
the measurement surfagg, parametrized as = X,,(x). The sources and
receivers are grouped in pairs as described by the measurement configuration
involved. The locations of the source-receiver pairs are given as a function of
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a two-dimensional vector parametthat varies on a given configuration aper-
ture setA. In other words, each source at pofit= S(§ = (xs(&),z5(§) =
Y (x5(€)) corresponds to exactly one receiver at positios: G(&) = (x¢ (&), 26 (&) =

For each source-receiver pair, there exists one and only oneligiat M (x,) =
(m,, = = X(x,)) on the reflectok, for which the composite ray My (i describes

a specular primary reflection. The dependescy= (&) implies that the lo-
cation of the specular reflection poifty is determined by the location of the
source-receiver paitS, &), which in turn is specified bg. We will denote the
plane-wave reflection coefficient for the ray/rG at My by R(Mg).

The function: = T'(§), for varying€in A, describes the reflection traveltime
from the sources (§) to the receiver+(¢) along along the primary-reflection ray
SMrG. This function is called the reflection-traveltime surfdatef the target
reflectorX. Both surfaces are said to be duals of each other. Points on the
traveltime surfac& will be denoted byV = N (& = (£t =T(§)).

For each poinfi/ on the target reflectat, there exists one and only one source-
receiver paif Sg, Gr) for which the composite ragr M G pertains to a specular
primary reflection af\/. This pair(Sg, Gr) is parameterized by a fixed value of
&, = &,(x) depending on the horizontal coordinat®ef A/. Note that this co-
ordinate defined/ as a point on the reflectar. We will denote the plane-wave
reflection coefficient for the rayr M Gr at M by R(M). Also, the notation
Nr = (&,t = T'(&,)) will be used for a point o’ pertaining tog,, i.e., to the
fixed source-receiver paig, Gr).

At any specified pointS, on the measurement surfatg,;, explodes a point
source with a certain source signal. Its time dependence can be described by
the analytic delta function\(¢) (REF??). In practice, of course, the analytic
delta function has to be replaced by its hifjaquency part convolved with some

real source pulse that may have a limited bandwidth. The effects of limited
bandwidth, however, do not influence the analysis carried out in this paper and
need not be considered here.

Moreover, we assume reproducible point sources of unit strength and an omni-
directional radiation pattern. We also neglect the transmission loss due to in-
terfaces in the overburden. In addition, all other factors affecting the seismic
amplitudes apart from geometrical spreading are assumed to be negligible or
have been corrected for.
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Under the above assumptions, zero-order ray-theory form provides the following
description of a primary reflected elementary wave. For every source-receiver pair
(S, G), with £in A, the reflection event at the receiver is described in analytic form by

R(MR)

Ke(§1) =~

At —T() . (1)

In the above formula, the amplitude factat$)/r) and L are the plane-wave reflec-
tion coefficient atMy and the geometrical-spreading factor pertaining to the specular
reflection rayS Mg(G. Note again that each point onI" defines exactly one point/

on.

We see thakit (& ¢) is aligned along the reflection-traveltime surfatas defined
above. We may say thdatr (& ¢) is the image of the reflectar at the reflection-
traveltime surfacé' in the time domain. In other words, the imafie (&, ¢) describes
what we can observe about the reflector in the recorded reflected wavefield.

We next introduce the functiof; (x, z), which is aligned along the target reflector
¥.. For eachx in £ and all real, the function/x(x, z) is defined by

In(x,2) = RIM)A(z — E(x)) (2)

The function/x(x, ~) can be conceived as the result of a true-amplitude depth migra-
tion (Schleicher et al., 1993) of the time-domain reflector image¢ ¢). In other
words, the function’s(x, z) describes the depth-domain true-amplitude reflector im-
age of the target reflectat in the depth domain. Analogously, the functiai (&, ¢)

can be conceived as the result of a true-amplitude demigration (Hubral et al., 1996) of
the depth-domain reflector imadg(x, ¢).

Note that the functiorix(x, z) is the complex version of thgingular function of
the reflectoras introduced by Bleistein (1987). It is defined here, however, in a true-
amplitude sense, i.e., with the varying reflection coefficient along the reflector as its
amplitude. Moreover, in the same way as expression (2) is referred to as the analytic
singular function of the reflector, we can interpret (1) as the analytic singular function
of the reflection traveltime surface.

Due to the above observations, we may state that eachgantl" is associated to
a single pointV/z on X and each poind/ on X is associated to a single poiN§; onT'.
The relation between these points is established by the respective specular reflection
rays S MrG and S M Gg. Thus, the points ol andI’ enjoy aduality relationship.
The two fundamental singular functiofs(x, t) and K1 (¢ ¢) can, correspondingly, be
calleddual functions of each other. Tygel et al. (1995) have shown that there exists
an even closer relationship in mathematical terms between both functions involving
various dualities.
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DIFFRACTION TRAVELTIMES AND SPATIAL ISOCHRONES

For arbitrary vector parametefsn A and arbitrary subsurface point$ = (x, z), we
introduce thdiffraction traveltimesurface

t="Tp(§x,2) =T(5(8,M)+T(G(§. M), 3)

namely the sum of traveltimes from the source and receiver pair specifi¢tblihre
subsurface point/. For a fixed point}/, the above formula expresses the traveltimes
from thediffractor point M to the source- and -receiver pairs specified by varging
This explains the adopted terminology.

It is also useful to consider the restriction of the diffraction traveltime function to
diffraction points on the reflectadf. We then introduce the traveltime surface

= TDR(€7 X) =T1p (57 X, E(X)) : (4)

In view of the above definitions, the reflection traveltime surfaee I'(¢) of the
given refletor: can be recast as

t =T(8 = Tor(§ xr(§) = Tn(§ &s, B(xn)) | (5)

where the horizontal vector coordinate = x(&) locates the the reflection point
Mpg = (xg, X(xg) onX determined by the source- and -recever pair specifiegl by

We next consider the spatial counterparts of the traveltime functions defined above.
For anyx oin £ and arbitrary pointsV = (& ¢) in record space, we introduce the
isochronefunctionz = Z;(x, & t). For any fixed pointV = (& ¢), this surface is the
locus of points); for which the diffraction traveltimes to the source- and -receiver
pairs specified by varying equal the given traveltime This is the reason for the
terminology isochrone (equal time) function. In symbols, poiviis= (x, Z;(x, & t)
on the isochrone are implicitly defined by the condifion

Tp(& M) = T(S(&), Mp) +1T(G(E, M) =t. (6)

Analogously as before, we find it useful to consider the restriction of the above-
defined isochrone function to poind on the traveltime surface of the reflector.
This gives rise to the function

£ = ZIR(Xvé) = ZI(Xvévt = F(é)) : (7)

2\We assume, throughoutthis paper, that fokah £, for all ¢in A and for allt under consideration,
isochrones = Z;(x, ¢ t)) defined by condition (6) exist asunique, smooth functions. This, of course
should impose restrictions on the shape of the reflector, as well as on the measuring configuration. These
matters will not be addressed in the present work.
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PointsM; = (x, 2z = Z;r(x, £) on the above surface are implicitly defined by the
condition

Tp(& Mr) =T(S(§, M) + T(G(&, M) =T(§ , (8)

A final observation is that the reflector functien= X(x) can be recast as a re-
striction of the above isochrone functions, namely

z=3(x) = Zir(x, &) = Z21(x, &, T'(&)) 9

whereg, = &,(x) is the vector parameter that specifies the source- and -receiver pair
Sr and Gir for which the two ray segmentSgMandMGr), with M = (x, X(x)
constitute a reflection ray.

As described in Tygel et al. (1995) and briefly reviewed below, diffraction travel-
timest = Tpr(& x), for fixed x, and isochrone surfaces= Z;x(x, &) for fixed € are
connected by duality relationships. The diffraction-traveltime surface for a géint
on Y is tangent td" at a pointN (supposed unique). Correspondingly, the isochrone
surface forN on I is tangent ta: at M. Also, further relationships between the dips
and curvatures of andI’ in M and N, respectively, can be established.

DUALITY THEOREMS

For a given configuration of source- and -receiver pairs distributed along a measure-
ment surface, the first and second duality theorems of Tygel et al. (1995) provide
fundamental geometrical relationships between a refléttord its corresponding pri-
mary reflection traveltime surfade As these relationships are crucial to the derivation

of practically all the results presented in this paper, we find it convenient to briefly state
and comment them in this section.

The duality theorems to be stated below relate tangents and normals (first-order
derivative) and curvatures (second-order derivative) properties concerniregdj&otor
Y 1z = X(x), with x in E and itsreflection traveltime surfacg : ¢t = I'(&), with &
in A, called throughout théundamental dual surfacesThe relationships between
the fundamenal dual surfaces are given in termswofiliary surfaces namely the
isochronesty : z = Z;(x, N) with N in T" and thediffraction traveltimed 'y, : ¢ =
Tp(& M) with M in X.

To state the duality theorems, we make use of all traveltime and spatial functions
introduced in the text. The traveltime surfaces were (@) the diffraction traveltime func-
tiont = Tp(& x, 2), defined for arbitrary vector paramtegand pointyx, z); (b) its
restrictiont = Tpr(& x) = 7p(& x, 3(x) to points on the reflectdi, - = X(x)) and
(c) the traveltime = I'(§) of the reflector’. As explained in the text, this function
could also be interpreted as a restriction of the of the previous traveltime functions.
The spatial counterparts of the preceding traveltime functions were (a) the isochrone
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functionz = Z;(x, & t), defined for arbitrary horizontal vectoxsand points(¢, ¢);

(b) its restriction: = Z;r(x,&) = Z;(x,&T'(§) to points on the reflection traveltime
surface(§ T'(¢) and (c) the reflector = X(x), which could also be iterpreted as a
further restriction of the preceding spatial functions. With the above definitions, we
are ready to state the duality theorems.

First duality theorem:

(a) For any given point/ at the reflectok, its corresponding diffraction traveltime
surfacd’,, istangento the reflection traveltimg at a unique pointv, called thedual
pointof M,

(b) For any given poiniV at the reflection traveltimg, its corresponding isochrone
surfaceXy is tangentto the reflecto®: at a unique poinfi/, called thedual pointof
N. The pointsM and/ in (a) and (b) are calledual of each other;

(c) For fixed¢in A and varying points// = (x, =), as well as for fixec in £ and
varying pointsN = (¢ ¢), define the partial-derivative functions

mp (67 M) = aZI]'D (67 X, Z) and N1 (X7 N) = atZI (X7 67 t) . (10)
For any dual pointd/ = M (xy,) in X andN = N (&) in T, we have

mD(éNvM)'nI(XMvN):l' (11)

(d) For the dual pointd/ = M (xy) inX nadN = N(&) inT. Let Sy andGy
denote the source and receiver points specified,byConsidering the reflection ray
SyMG y, letag be the the angle the incident ray A/ makes with the normal of
at M, let be the ange between the tangentitat A/ and thez-axis and letv be the
velocity of the medium just abov&/. Finally, letdr denote the angle the normal to
I’ makes with the-axis at/N. Using the same notation as above, the following results

are valid
_ 2cosarcos Bp

mp = v 9 (12)
R
m 2cos«
0T (& M) = S = — . (13)
and o on
0.Z21(xa, N) = (14)

cosfr  2cosagcos Brcoslp
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Second duality theorem:

For arbitrary¢ and M = (x, z) introduce the&-Hessian matrices

_ PTp(& %, 2) _ 0°I'(§ _ 9*Tpr(&x)
-gD(éXvZ) - ( a&a@ ) 9 £(€) - (a&a&) and %DR(& X) - ( a&a@ ) .
(15)

In the same way, for arbitrary and N = (& ¢), introduce thex-Hessian matrices
matrices

Z,(x,§1) = (%) , Z(x) = (Zz]@(;{j) and Zp(x,§ = (aai%a(i}()) '
(16)

Introduce finally the mixed-derivative matrices

2 VXT (67 X, Z)
ADR(&X?Z) = (M) and HB(€7X7Z) = aflv?]'D(éXvZ) . (17)
~ oo, ~ 0V Tn)é %, )

For any pair of dual pointd/ = (x,z)in X andN = (§¢) in T, let the above
matrices be evaluated at the respective coordinates and points. Introduce further the
simplifying notations for the obtained matrices by leaving out their arguments. Then
the following relationships are valid

I,\IJD - ,E = ;/}JDR I,\IJB% ;/}JgR ) (18)
mp (%I - E) = - -EDR ) (19)

and
mp %IR = ;/}JDR 'gDR ;/}JgR : (20)

A useful relationship can also be obtained after eIiminatiog;Iq;‘R in equations (18)
and (19), namely

mp (-ED - £) = ;/}JDR (%I - E)_l ALT)R ) (21)
Moreover, we have the additional relationship
hp
det Apr = mp (22)
where
he = det Hy (23)

is the so-called Beylkin determinant (Beylkin, 1985, Bleistein, 1987).

It is to be reminded that the first duality theorem and equations (18), (19) and (21)
have been proved in Tygel et al. (1995). The new equation (21) is proved in Appendix
A. With the inclusion of the this last equation, we call the above results the duality
theorems in their complete form.
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THE KIRCHHOFF-HELMHOLTZ INTEGRAL PAIR

The Kirchhoff-Helmholtz (KH) modeling integral, called from now on the forward
KH integral, asymptotically computes the singular functiop(& ¢) of the reflection-
traveltime surfaca’. Input to this calculation is the location of the reflectarthe
velocity distribution in the depth domain, and the values of the reflection coefficient
R(M) alongX.

In a completely analogous way, the inverse KH integral to be defined below, as-
ymptotically computes the singular functidp(x, =) of the reflector. Input to this
calculation is the location of the reflection-traveltime surfBcéhe velocity distribu-
tion in the depth domain, and the wavefield amplit@®g//r)/ L alongT'.

In this section, we discuss both the forward and inverse KH integrals as well as
their basic dual properties. The weight functions, which are also presented here, will
be derived in the next section.

Under the assumptions stated in the previous section, the forward KH integral can
be written as an integral along the reflectbin the form (Frazer and Sen, 1985)

K(E0) = [ds W@ M) ROD A0 - To€ M), (24

whereK (& ) is the modeled elementary wave at the receiveq). Also, d, denotes

the partial derivative in the direction of the normal to the surfacat A/. Under

the above-mentioned assumption that transmission losses in the overburden can be
neglected, the weight function is given by

1
C LsLs

wherel s andL denote the geometrical-spreading factors along the two ray branches
from the source to the pointd/ and from there to the receivér (see Figure 1).

WK (67 M) (25)

Let us now investigate integral (24) more closely in order to better understand it
geometrically. This will help us to set up an analogous integral for its inversion. For
the following discussion, we refer to Figure 1.

We start by considering a certain, fixed val§ievhere we want to compute the
reflected wave as a function of time. We recall thaefines a certain, fixed source-
receiver pair, which we denote ljy, ). We denote byl the (supposedly unique)
reflection point or® which correspond to the source-receiver gairG). The point
Mpg, on its turn, defines a diffractin traveltime surface that is tangent to the reflection
traveltime surfac& on a (supposedly unique) point. This point, denotedvbig called
the dual to point\/r. We observe that for each poimf on the reflector, integral (24)
contributes to the final respongé(& t) at a single point) = (£t = Tp(& M)),
where 7, is defined in equation (3) as the sum of traveltimes along the fays
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and M G. In other words() is the point where the diffraction traveltime surface for
point M, t+ = Tp(& M), cuts the vertical line a (see Figure 1). We remind that
the surface = 7, (& M) is given by all traveltimes along the rays from any source-
receiver pair( S, ) to point M (dashed rays in Figure 1). The poigtwill fall onto

I, i.e., it will coincide with pointN, the dual point tolV, when M coincides with

Mpg. At N, the diffraction traveltime surface dfir, t = 7p(& M), is tangent td".

Due to our assumption that the reflectdis continuous and smooth, we thus have a
stationary situation a¥, which means that the main contribution of integral (24) will
be observed at that point. In other words, the forward KH integral (24) transforms the
singular function of reflectoE into its image af’. The weight functionVy (& M)
serves to perform this transformation in a dynamically correct way, i.e., yielding the
correct wave amplitude a¥.

To set up a completely analogous integral that achieves exactly the inverse task,
namely to reconstruct the singular function of the refle&tdrom its image at’, we
only have to substitute in the above integral all points and surfaces by their respective
duals. This is geometrically described with the help of Figure 2.

The new integral to be set up has to consist of an integration along the reflection-
traveltime surfacé’ instead of the reflectdr. As before, we consider the integration
result at a certain, fixed coordinatavhich defines a point/ on the reflectot. The
point M M determines a (supposedly unique) dual pdipt = Ny on the reflection
traveltime surfacé’. The isochrone specified by the poilk; will be tangent to the
reflectorY at the (supposedly unique) poiff. The pointsM and Ny are said to be
dual points. For each poifX onI’, the new integral has to contribute to the final result
I(z, z) at a certain poin®. This point P must be located at the position where the
isochrone ofN, » = Z(x, N) cuts the vertical line a. In symbols,P = (&,: =
Z(z, N)). The pointP will fall ont ¥, i.e., it will coincide with A7, whenN coincides
with Ng, the dual point ofM. At M, the isochrone: = Z(x, Nr) is be tangent
to ¥. Due to our above assumption of a smooth reflector and uniqueness of dual
points, we have again the situation of an isolated singularifyf atvhich means that
the main contribution of the new integral will be observediat In this way, we
have geometrically constructed a transformation of the reflection-traveltime function
Y into the reflectory. A free weight function will be included into the integral in
order to assure that also this inverse transformation can be performed in a dynamically
correct way, too, i.e., to correctly reconstruct the varying reflection coefficient along
the reflector.

Transforming the above observations into mathematical terminology in full corre-
spondence to the forward KH integral, we can now set up the following inverse KH
integral,

R(ﬁ,@ DA — Zi(x,N)) . (26)

I(x,2) = — ﬁ/dl“ Wi(x, N)

where/(x, z) is the final imaging result. In this formuld, denotes, correspondingly
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to 0, above, the partial derivative in the direction of the normal to the traveltime surface
[ at N. We recall thatV/, is the specular reflection point on the reflector pertaining to
the source-receiver paif, ) defined by¢. From the analysis to be carried out below,

it will become clear that the weight function can be represented as

ESEG ’ (27)

whered represents the “local dip angle” of the reflection-traveltime surfaiee., the
angle the normal td' at N makes with the verticalaxis), andy denotes the incidence
angle the incoming ray-branch slowness vector makes with the isochrone norfhal at
(see Figure 2). Moreovel,g is the modulus of the Beylkin determinant (Beylkin,
1985; Bleistein, 1987). All these quantities are computed for the actual yoomtI".

In mathematical terms, the two stationary situations mentioned above relate to the
following statements for the asymptotic integral results. As is well known (see, for
example, Bleistein, 1984); Tygel et al., 1994) the Kirchhoff-Helmholtz integral (24)
can be evaluated in the high-frequency approximation, such that, in an asymptotic
sense, it equals the zero-order ray-theoretical expression, viz.,

R(MR)
L&)

As indicated above, we shall show that correspondingly, the evaluation of integral (26)
in high-frequency approximation yields, in an asymptotic sense,

K(&1) ~ Kp(&1) = At —T(8) . (28)

I(x,2) ~ Ix(x,2) = R(M) A(z — X(x)) , (29)

i.e., the (complex) singular function of the reflector as defined above. This means that
integral (26) is the inverse to the forward KH integral (24), or, in other words, integrals
(24) and (26) form a transform pair between the depth-domain infage =) of the

target reflector and its time-domain imagie (¢, ¢) in multi-coverage reflection data.

ASYMPTOTIC EVALUATION OF THE INTEGRALS

In the same way as the forward KH integral, also its inverse defined above admits
simple asymptotic evaluation, irrespective of the specific form of the weight function,
which will, for the time being, be left unspecified. In the following section, we will
compare the asymptotic evaluations of both KH integrals to confirm the correct duality
of the transformation pair given by equations (24) and (26). The kinematic part of the
analysis will show that an inverse KH integral of the form defined in equation (26)
exists, and the dynamics of both integrals will, in fact, determine the adequate form of
the necessary weight function in integral (26).
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Asymptotic evaluation of the forward KH integral

In high-frequency approximation, the leading term of the asymptotic evaluation of the
forward KH integral (24) is given by
R(MR) el (2—0)/4

[(as(év t) = 2'65 'CG coS 61% |H| aUTD (57 MR) A(t - F(é)) ’ (30)

where Mp = M () is the (unique) specular reflection point on the target reflector
Y. It pertains to the source-receiver pair specified by the given configuration vector

parameteg. Here,a, = a,(&) is the stationary point of integral (24). Als@y, is the
reflector dip atMy. Finally,c and H are the signature and the determinant, respec-
tively, of the Hessian matrix of the traveltime,

0*T; X
Hotex) = (2524 )

evaluated at¢ x ). The projection of this matrix into the tangent plane to the reflector
Y at My is referred to as the Fresnel matrix, because it was shown in Hubral et al.
(1992) that it is this projected matrix which defines the size of the Fresnel zddg.at

(31)

Using the well-known fact that the high-frequency evaluation of the forward KH
integral (24) yields the zero-order ray-theoretical expression (1) (Bleistein, 1984), one
obtains the following decomposition formula for the geometrical-spreading factor
along rayS MrG

Ls L ,

s Lavg cos SR i (0—2)/4
COS R

where we have used that, at the stationary pbipt

2 cosap €os A

azI]'D (67 MR) = v ) (33)
R
from which . 5
CcoS o
0nTp (& MR) = maﬂb (& Mp) = on iy (34)

Here,vr is the local velocity and  is the specular reflection angle/;. Introducing
theFresnel geometrical-spreading factfrygel et al., 1994)
cosap ezﬁr (2—0)/4

Lr= , (35)
VR COS R |H |

we find the following formula for the geometrical-spreading decomposition

(36)

This formula will be of further use in the evaluation of the inverse KH integral (26).
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Asymptotic evaluation of the inverse KH integral

In the same way, the asymptotic evaluation of the inverse KH integral (26) yields

R(M) Wi(x, Ng) e~im(2+7)/4
L 2cosfp A

Lo(x,2) = 0,216, Np) Az — 2(x)),  (37)

whereNp = N (&) specifies the source-receiver p@ik, Gr) for which the reflector
point M (x) is a specular reflection (stationary) point. Hefe = £, (x) is the station-
ary point of integral (26). In other word$\r, on the reflection-traveltime surface

is the dual point to the point/(x) on the target reflectot in the vicinity of which
the integral (26) is calculated. Finally,and” are the signature and the determinant,
respectively, of the isochrone Hessian matrix

Ziixg = (22X (38)
evaluated afx, &), anddy, is the local reflection-traveltime dip Afx.
As shown in the Appendix, we have that
0u21(& Ni) = 2cosap CZ]:ﬂR cosfp’ (39)
and also
e—im (2+47)/4 _ 4cos® apcos g (40)

|Z| N v%hB/:F

Substitutution of the above expressions into equation (37) together with the use of the
geometrical-spreading decomposition formula (32), leads to

cos® ap

I,5(x,2) =R(M) W;(x, Ng)

hpv% cos?O0pLls Lo Az —2(x)) - (41)

We observe that equation (38) kinematically reconstructs the singular function (29)
of the reflector:. To also achieve correct dynamic reconstruction, we have to choose
the weight functionV;(x, Ng) such that the amplitude factor in equation (41) equals
R(M). This determines the sought-for weight function as

hp v% cos?Op

Wi(x, Ng) = LsLeq, (42)

cos? ap
Observing that there is no quantity involved that depends on the reflector, we can
generalize this weight function to any arbitrary pawit This final weight function of

the inverse Kirchhoff integral (26) is the one stated in equation (27).
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CONCLUSIONS

We have presented a completely analogous inverse to the well-known forward Kirchhoff-
Helmholtz integral. Just as the forward Kirchhoff-Helmholtz integral can be conceived

as a superposition of the elementary responses of all Huygens secondary sources along
the reflector, we can conceive its inverse as a superposition of “elementary reflection
images” along the reflection-traveltime surface. The new inverse Kirchhoff-Helmholtz
integral was constructed using the fundamental dual properties that relate the points
and surfaces of the time-domain data space and the depth-domain model space. For
instance, in the same way as the Huygens secondary sources can be interpreted math-
ematically as the source pulse multiplied with the local reflection coefficient at any
point on the reflector, the elementary reflection images can be represented by the local
pulse of an elementary reflected wave at any point on the reflection-traveltime surface.

The inverse Kirchhoff-Helmholtz integral fills a recently discovered gap which
originates from the observation that the conventional Kirchhoff migration integral
(Schneider, 1978) is not an inverse to the forward Kirchhoff-Helmholtz integral. In
fact, there exists another inverse to migration, namely the Kirchhoff demigration in-
tegral (Hubral et al., 1996; Tygel et al., 1996). Although the latter can be used for
modeling purposes (Santos et al., 1998), it is not identical to the forward Kirchhoff-
Helmholtz integral. Therefore, the Kirchhoff migration integral cannot be the inverse
to forward modeling by the Kirchhoff-Helmholtz integral as is conventional wisdom.

In this paper, we have shown that there is indeed a different, although related, inverse
Kirchhoff-Helmholtz integral.

The proposed inverse Kirchhoff-Helmholtz integral enables the design of a new
seismic migration technique that would deserve the name Kirchhoff migration much
more than what is up to now associated with this name. The construction of true-
amplitude migrated reflector images by the new migration technique can be achieved
by the superposition of their elementary reflection images along the reflection-traveltime
surface. In this way, the migration can be realized as a weighted stack along the (iden-
tified and picked) reflection-time surface instead of the conventional diffraction-time
surfaces (that have to be calculated in a macro-velocity model). Of course, to recover
the correct reflector position as well as to calculate the weight function, also the new
migration technique needs a macro-velocity model.
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APPENDIX A

In this appendix, we provide a derivation of equations (39) and (40), which were cru-
cial for obtaining the weight function (42) of the inverse Kirchhoff-Helmholtz trans-
form. These derivations rely on the use of the duality theorems presented in the text.
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A proof of the new result (20) of the second duality theorem will be given in the
derivation. Proofs of the remaining duality theorem results can be found in Tygel et al.
(1995). To derive equation (39), we first observe that

1 ny
o Z Mpg) = .
cosfp 1(x, M) cosfp ’

O Z1(x, M) = (A1)

In view of equation (11) of the first duality theorem and also upon the use equation
(A-8), we readily find

1 VR

Oy Z1(x, Mr) = (A-2)

mp cosOrn - 2 cos ag cos fr cos g
which is equation (39), as required.

We now proceed to prove equation (40), as well as equation (20) of the second
duality theorem. Recalling that/;(x, &) = (x, Z(x, N(§))) is a point on the isochrone
defined by, we start from the identity (6), which can be alternatively represented as

TD (67 MI (X7 5)) = F(f) . (A_3)
Differentiate both sides with respectgp(; = 1, 2) using the chain rule to obtain

0Tp 0z oI

+0.Tp(E My) — = — . A-4
ag, "M e = o A
At the stationary pointVi, we have

0Z/0¢;, =0. (A-5)
Therefore, we find the well-known tangency property

oTp Jr

=—. A-6
9 9 (A9

We next differentiate both sides of equation (A-4) with respe tagain using the
chain rule. At the stationary poimr, we find upon the use of the stationary condition
(A-5)

9*T; 0*Z o’r
+ azT Y M = . A-7
sgog; T TP EMR) Bede; = Beog, A
Dividing by
mp = azTD (67 MR) 3 (A-S)
we obtain ) . 9
0%z 1 0°Tp o°T ]
_ _ , A-9
D0 mp [3&9& 0&0¢; (A9)
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which, in the notation as introduced before, recovers equation (20)

1
Z-—— [HD - r] , (A-10)
as desired. To find an expression for the determina® ofre take the determinant of

both sides of equation (A-10). In view of the second duality theorem, equations (18)
and (22), we find

7z =det Z = M 1k (A-11)
N N_m4D detIr\IJ_m‘lDH
and
’y:Sgng:— SgnIr\IJ:—a. (A-12)
These two equations can be combined into
—ir (247)/4  m%,/|H .
. VI e (A-13)
|Z] hi
Using the Fresnel geometrical-spreading formula (35), we find
—im (247)/4 2
€ _ cosar mp Lo (A-14)
| Z| vRCOS Br hp
Use of equation (33)
2
mp = 0T (& My) = 2250n 08 (A-15)

VR

yields the desired equation (40).
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Figure 1: The forward Kirchhoff-Helmholtz integral understood geometrically. For
each pointV/ on ¥, the integration contributes to the reflection response computed for
&at the corresponding poiat = (& ¢ = 7p (& M)). For details see text.
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Figure 2: The inverse Kirchhoff-Helmholtz integral understood geometrically. For
each pointV on I, the integration contibutes to the reflector depth image computed
for z at the corresponding poiit = (z,¢ = Z(z N)). For details see text.



