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Seismic finite-difference modeling with spatially
varying time steps
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ABSTRACT

Numerical seismic modeling by finite-difference methods usually work with a global
time step size. Due to stability considerations the time step size is essentially deter-
mined by the highest seismic velocity, i.e., the higher the highest velocity, the smaller
the time step needs to be. Therefore, domains of low velocity are temporally oversam-
pled, if large velocity contrasts exist within the numerical grid. Using different time
step sizes in different parts of the numerical grid can considerably reduce computa-
tional costs.

INTRODUCTION

Seismic modeling becomes increasingly popular for studying wave phenomena in
complex structures. With increasing computer power it is now easily possible to solve
the elastodynamic equations, whereas in the past merely the acoustic wave equation
was solved. Elastic modeling offers much more insight into the mechanisms of wave
propagation than acoustic modeling does. However, since in isotropic elastic modeling
two wave types are involved spatial and temporal sampling has to cope with both P-
and S-waves. Therefore, for elastic modeling the grid spacing needs to be smaller than
for acoustic modeling and consequently the time step size has to be smaller. This in
turn increases the computational effort.

Topics of interest are for example tube-wave interactions with cracks in order to
monitor crack growth in a hydro-frac cycle . In such situations seismic velocities dif-
fer greatly, were the steel casing has extremely high P-wave and the mud cake has
extremely low S-wave velocities. Another more common situation with large velocity
contrasts appears in ordinary field acquisitions. There, S-wave velocities in the weath-
ered zone can be extremely low, whereas the P-waves in the subsurface may have quite
high velocities.
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In order to save computational costs one can think of optimizing spatial and tem-
poral sampling according to the local parameters. In domains were high velocities
imply long wavelengths the numerical grid can be made more coarse, or were low
seismic speeds result in short wavelengths the grid spacing can be made smaller. Such
techniques were applied by Jastram and Tessmer (1994) and Moczo (1989) in order to
refine the resolution of interfaces. Falk et al. (1996) used such a techni que for better
resolution of the borehole and its vicinity. The variation of grid size can be made in
sharp jumps or can be made smoothly by mapping functions (Fornberg, 1988). Differ-
ent temporal sampling in different parts of the numerical grid was introduced by Falk
et al. (1997). However, the method is restricted to ratios of time steps between the dif-
ferent domains of2n. The new method presented here can handle any positive integer
ratio. A further advantage is that the width of the transition zone between domains is
constant and does not depend on the time step ratio.

Numerical examples and comparisons with analytic solutions for two halfspaces in
juxtaposition demonstrate the accuracy of the method.

SOLUTION OF THE EQUATION OF MOTION

The equations of motion in compact notation reads

@2u

@t2
= �L2u + s; (1)

whereu is the displacement vector,s is the source term and the operator�L2 contains
the material parameters and spatial derivatives, e.g. (Kosloff et al., 1989).

The formal solution of equation (1) reads

u(x; t) =

"Z t

0

sinLt

L
h(t� � )d�

#
g(x); (2)

whereh(t) is the source time history function andg(x) is the spatial distribution of
sources.

After discretization in time and expanding into a Taylor series the well-known
leap-frog second order time integration scheme can be derived from this:

un+1 = �un�1 + 2un + (�t)2
�
�L2un + s

�
: (3)

The time stepping is done iteratively from one time level to the next, where the scheme
is symmetrically around time leveln�t.
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Figure 1: Domain of dependency of a 4th order FD operator.

SCHEME FOR TIME INTEGRATION

Finite-difference derivative operators depend on a few grid points usually located sym-
metrically around a central point for which the local derivative is to be computed
(Figure 1). The number of grid points involved depends on the order of the finite-
difference approximation. Difficulties are encountered if the FD operator approaches
domain boundaries, since field values, which do not exist at certain time levels, are
required by the operator scheme.

If time integration of different time step sizes in two domains is performed, these
missing values have to be provided. Within a zone beyond the domain boundary these
points can be calculated by the same time integration scheme like in the remainder of
the computational domain. The only difference is that the time step size is different.
The method for space dependent time integration is based on equation (3) . For the
sake of simplicity the procedure is demonstrated for the 1-D acoustic case, though in
the examples below it is implemented for the 2-D elastic case. Figure 2 shows the 1-D
grid at various time levels were time stepping in the right part is performed three times
as often than in the left part. Open circles and diamonds represent the gridpoints where
time integration has to be performed at extra time levels. The procedure is as follows:
Let us assume a base time step size�t. We start at time leveln�t. In Domain 1 and
Domain 2 time stepping is done with sizes3�t and1�t, respectively. This is done in
a conventional way, where values of the previous time level ((n�3)�t and(n�1)�t,
respectively) are incorporated. We then end up at time(n + 3)�t and(n + 1)�t for
Domain 1 and Domain 2, respectively. In order to step to(n+ 1)�t in Domain 2 field
variables at intermediate times in Domain 1 are required. These additional values can
be computed with time size1�t from time leveln�t and(n� 1)�t (open diamonds),
and with time size2�t from time leveln�t and(n� 2)�t (open circles).
There is almost no extra numerical effort, since the most expensive term in the compu-
tations�L2un is already available. Only extra memory locations need to be allocated
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Figure 2: Time integration scheme, where time steps in Domain 2 (right) are three
times smaller than in Domain 1 (left).



211

for keeping the field variables at intermediate time levels near the domain boundary
(gray shaded area in Figure reftime).
If a staggered grid scheme is used the width of the transition zone needs to be do
doubled, since two first order spatial derivatives are applied per time step.

EXAMPLES

Two examples demonstrate that the method with domain dependent time step size
does not produce artifacts at the domain boundary and a comparison with an analytic
solution shows its accuracy. The models are based on the 2-dimensional elastodynamic
equations with 8th order staggered grid finite-difference derivative operators. The grid
spacing, both in the horizontal and the vertical direction is 5 m. The source has a
Ricker-like time history function with a cutoff frequency of 50 Hz.

Two halfspaces with large velocity contrast

The model is made up by two halfspaces (see Figure 3). The halfspaces are charac-
terized byvp=2000 m/s,vs=1155 m/s and�=1000 kg/m3 above the interface and by
vp=8000 m/s,vs=4620 m/s and�=2000 kg/m3 below the interface, respectively. This
is a very strong contrast of the impedances. The explosive point source is positioned
100 m above the interface. The receivers R1, R2, and R3 are placed 220 m above the
reflector. The horizontal distances against the source position are 300 m, 600 m, and
900 m. The time step size in the upper halfspace is 0.4 ms and in the lower halspace
0.1 ms, respectively. The ratio of the time step sizes reflect the contrast of the seismic
velocities. The savings of computational costs due to different time steps were 37.5
percent, since the two domains were of same sizes. Figure 4 shows the comparison
of the horizontal and vertical component of the displacements of the numerical and
the analytical solutions, respectively. The analytical solutions was computed by a pro-
gram of Berg et al. (1994). The comparison shows good agreement between the two
solutions. However, the vertical component appears not as accurate as the horizontal
component. Tests with a constant time step size of 0.25 ms throughout the entire model
(not shown here) gave the same results. Therefore these small inaccuracies in the pres-
ence of large velocity contrasts must be attributed to staggered-grid FD methods in
general.

Test for artificial reflections

In the second example the two halfspaces have exactly the same material parameters,
so that there should be no physical reflection from the numerical interface. The pa-
rameters arevp=2000 m/s,vs=1155 m/s and�=1000 kg/m3. The time steps in the
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Figure 3: Source-receiver geometry and model parameters for the comparison with the
analytic solution.
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Figure 4: Comparisons of horizontal (left) and vertical (right) component of FD solu-
tion (dotted line) with analytic solutions (solid line) at receiver positions R1, R2, and
R3 of Figure 3. All amplitudes are normalized.
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Figure 5: Vertical component snapshot of the displacement field in a homogeneous
model at t=600 ms. The amplitudes are clipped at 1 percent of the maximum ampli-
tude. Only a very small amount of artificial reflection/refraction from the numerical
interface at vertical grid point # 300 can be observed.

lower halfspace are eight times smaller than in the upper halfspace. In order to make
artifacts visible the gain was chosen such that amplitudes were clipped at 1 percent of
the maximum value. The wavefield snapshot of the vertical displacement component
shows that the wave front passes the numerical interface with only a negligible amount
of reflected and refracted energy (see arrows in Figure 5). The amplitudes of the re-
flected/refracted arrival is much smaller than the arrival of the direct wave (see arrow
in Figure 6). The reflection is caused by the different numerical behaviour of the two
domains: due to the different time step sizes, the dispersion!(k) in the two domains
differ and hence the numerical velocities are slightly different. Reflections from the
left side and the bottom are due to imperfectly absorbing boundary conditions.
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Figure 6: Vertical component of the displacement. The receiver position (compare
Figure 5) is at grid point (250,250). Only the direct arrival can be seen. Artifacts are
invisible.

CONCLUSIONS

Domain dependent time steps sizes in FD modeling can save computer time, if large
velocity contrasts are present in the subsurface model. Also, if parts of the computa-
tional domain are represented on a very fine grid, this technique can save a consider-
able amount of computational work. The savings depend on the relative sizes of the
computational domains and on the ratio of the respective time step sizes.
Comparisons with analytic solutions for two halfspaces have shown, that the technique
works very accurate and that numerical artifacts are negligible. More than two do-
mains with different time steps can be combined. The method can be extended straight
forward to 3-dimensional modeling.

ACKNOWLEDGMENTS

The work was supported by Deutsche Forschungsgemeinschaft (German Science Foun-
dation), Project Te-266/1-1.



215

REFERENCES

Berg, P., If, F., Nielsen, P., and Skovegaard, O., 1994, Analytic reference solutions,in
Helbig, K., Ed., Modeling the Earth for Oil Exploration - Final report of the CEC's
GEOSCIENCE I Program 1990-1993: Pergamon Press, 421–427.

Falk, J., Tessmer, E., and Gajewski, D., 1996, Tube wave modelling by the finite-
difference method with varying grid spacing: PAGEOPH,148, 77–93.

Falk, J., Tessmer, E., and Gajewski, D., 1997, Efficient finite-difference modelling of
seismic waves using locally adjustable time step sizes: Geophysical Prospecting,
submitted.

Fornberg, B., 1988, The pseudospectral method - accurate representation of interfaces
in elastic wave calculations: Geophysics,53, 625–637.

Jastram, C., and Tessmer, E., 1994, Elastic modelling on a grid with vertically varying
spacing: Geophysical Prospecting,42, 357–370.

Kosloff, D., Fihlo, A., Tessmer, E., and Behle, A., 1989, Numerical solution of the
acoustic and elastic wave equations by a new rapid expansion method: Geophysical
Prospecting,37, 383–394.

Moczo, P., 1989, Finite-difference technique for SH-waves in 2-D media using irregu-
lar grid: application to seismic response problem: Geophys. J.,99, 321–330.


