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ABSTRACT

A generalization of the Kirchhoff-Helmholtz approximation to anisotropic elastic me-
dia is achieved by replacing the unknown scattered field in the Kirchhoff integral rep-
resentation by the specular reflected field at the interface. The latter is represented by
the geometrical ray approximation of the incident field multiplied with the amplitude-
normalized plane-wave reflection coefficient and with an exchanged polarization vec-
tor according to a specular reflection obeying Snell's law. The stationary-phase eval-
uation shows that the high-frequency result of the obtained integral approximation of
the reflected field closely resembles the geometrical ray approximation. If the phase
velocities at the scattering point appearing in the integral are replaced by the respec-
tive group velocities, the correspondence is exact.

INTRODUCTION

Wave propagation is often qualitatively described using Huygen's principle, which
states that the superposition of secondary sources along the wavefront at a certain time
produces the next wavefront at a later time. Using the divergence theorem, this prin-
ciple can be quantified in the Kirchhoff integral (Sommerfeld, 1964). The wavefield
at the observation point is calculated by an integral over the field and its derivative
along a surface completely surrounding the observation point, provided the sources
are located outside that surface.

For anisotropic media, with suitable boundary conditions on the Green's function,
the reflected wavefield from a smooth interface can be expressed as a surface integral in
terms of the upgoing wavefield and its normal derivative at the interface. This integral,
which can be derived from Betti's theorem (see, e.g., Aki and Richards, 1980), is the
generalized Kirchhoff integral.
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The Kirchhoff-Helmholtzapproximation, which is a generalization of the physical-
optics approximation (Bleistein, 1984) will be used in the Kirchhoff integral. The
unknown upgoing wavefield is approximated by the known specularly-reflected wave-
field from the source.

The geometric ray approximation (GRA) (Cerven´y, 1995, Chapman and Coates,
1994) will be used to approximate the Green's functions from the source to the inter-
face and from the interface to the receiver. The Green's function can represent any type
of wave, so that the results will be valid for multiply reflected and converted waves in
anisotropic media, to the extent in which the GRA is valid. The final result is a gener-
alization to anisotropic media of the standard Kirchhoff-Helmholtz integral (Tygel et
al., 1994) and of the results of Fraser and Sen (1985) for isotropic media. In order to
check the the amplitude response of the new integral, a stationary-phase analysis will
be performed as in Ursin and Tygel (1998).

The new integral is non-reciprocal, so it would be interesting to compare it numer-
ically with the reciprocal formula derived by Ursin and Tygel (1998) using the Born
approximation.

THE KIRCHHOFF-HELMHOLTZ INTEGRAL

Wave propagation in an inhomogeneous anisotropic elastic solid, in the a absence of
sources, is governed by the equations of motion (Aki and Richards, 1980)

��ui � (cijkluk;l);j = 0 ; (1)

whereui = ui(x; t) is thei-th component of the displacement vectoru(x), � = �(x)
is the density andcijkl = cijkl(x) are the elastic parameters of the medium at the point
x = (x1; x2; x3). The elastic parameters satisfy the symmetry relationscijkl = cjikl =
cijlk = cklij. In equation (1) “_” stands for@=@t and\; j” for @=@xj. Also, a repeated
index implies summation with respect to this index.

The equation of motion for the Green's functiongin(x; t;xs) is

��gin � (cijklgkn;l);j = �in�(x� xs)�(t) ; (2)

with initial conditions

gin(x; t;x
s) = _gin(x; t;x

s) = 0 for t < 0 andx 6= xs : (3)

The Green's function also satisfies the reciprocity relation (Aki and Richards, 1980,
equation (2.39))

gin(x; t;x
s) = gni(x

s; t;x) : (4)
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The (temporal) Fourier transform of the Green's function,Gin(x; !;xs), satisfies the
elastic Helmholtz equation

� !2�Gin � (cijklGkn;l);j = �in�(x� xs) : (5)

The reciprocity relation (4) now becomes

G(x; !;xs) =GT (xs; !;x) : (6)

We shall use the geometric ray approximation (GRA) to obtain the approximate Green's
function. Using the results in Cerven´y (1995), we have for a specific ray connecting a
source pointxs to a scattering pointx, the GRA Green's function

Gij(x; !;x
s) = hsi (x)

a(x;xs) ei!T (x;x
s)

[�(x)vs(x)�(xs)v(xs)]1=2
hj(x

s) ; (7)

whereh(xs) andhs(x) are the unit polarization vectors,�(xs) and�(x) are the den-
sities andv(xs) andvs(x) the phase velocities in ray direction at the sourcexs and at
the pointx, respectively. Moreover,T (x;xs) is the traveltime along the ray fromx to
xs and

a(x;xs) =
e�i

�
2
sgn(!)�(x;xs)

4�jdetQ
�2(x;x

s)j1=2 (8)

is a complex amplitude function taking into account possible caustics and phase-shift
at the source. In this expression,jdetQ

�2(x;x
s)j1=2 denotes the relative geometric

spreading factor and�(x;xs) is the KMAH index for the ray that connects the source
xs to the pointx. We shall approximate the spatial derivatives by

Gij;k(x; !;x
s) � i! T;k(x;x

s)Gij(x; !;x
s)

= i! pskGij(x; !;x
s) (9)

wherepsk = psk(x) is thekth component of the slowness vectorps(x) at the pointx
(for the ray from the source).

We shall consider the wavefield from a source atxs that is being reflected from a
surface� and recorded at the pointxr, as shown in Figure 1. The wavefield atxr can be
expressed as a surface integral involving the displacement fieldu(x) at the surface�
by using a representation theorem that is given in Aki and Richards (1980), equation
(2.41). In the absence of body forces, and with a Green's function that satisfies the
reciprocity relation (4), this gives

um(x
r; !) =

Z
�

�
Gmi(x

r; !;x) cijkl(x)uk;l(x; !)

� Gmk;l(x
r; !;x) cijkl(x)ui(x; !)

�
nj d� : (10)
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We want to find an expression for the Green's function for the reflected field from
� due to a point sorce atxs. In order to this, we need an approximation for the upgoing
field at� which can then be substituted into the surface integral above. We propose to
use the generalized Kirchhoff approximation (see Bleistein, 1984)

Gref
ij (x; !; x

s) = h
spec
i (x)

R(x;ps) a(x;xs) ei!T (x;x
s)

[�(x) vs(x) �(xs) v(xs)]1=2
hj(x

s) ; (11)

wherehspec is the polarization vector corresponding to a specular reflected wave of
proper type at the pointx on �, due to the wave fromxs andR(x;ps) is the plane-
wave reflection coefficient (normalized with respect to displacement amplitude) for
our choice of incoming and outgoing type of wave.

The approximation of the derivative of this Green's function at the pointx is given
by

Gref
ij;k(x; !;x

s) � i!pspec
k Gref

ij (x
r; !;xs) ; (12)

wherepspec is the slowness vector of the specular reflected wave. The integral in
equation (10) now yields for the recorded field atxr

�Gmn(x
r; !;xs) =

Z
�

�
Gmi(x

r; !;x) cijkl(x)G
ref
kn;l(x; !;x

s)

� Gmk;l(x
r; !;x) cijkl(x)G

ref
in (x; !)

�
nj d� : (13)

Here, we shall use the GRA Green's function from the source atxs to the pointx for a
specified wave (given by a specific ray code) as represented by equation (7). We shall
also use the corresponding GRA Green's function from the pointx to the receiver at
xr for another specified wave (also given by a specified ray code). A possible wave-
mode conversion atx is taken care of by selecting the proper reflection coefficient in
equation (11). With the Kirchhoff approximations (11) and (12), equation (13) can be
approximated by

�Gmn(x
r; !;xs) = i!

Z
�

hm(xr) a(xr;x)

[�(xr) v(xr)]1=2
cijkl(x)nj

�(x)[vr(x) vs(x)]1=2

�
�
hri (x)h

spec
k (x)pspec

l (x) + hrk(x)h
spec
i (x)pl(x)

�
� ei![T (x

r;x)+T (x;xs)] R(x;x
s) a(x;xs)hn(xs)

[�(xs) v(xs)]1=2
d� : (14)

This is the Kirchhoff-Helmholtz integral for anisotropic elastic media. The phase ve-
locities atx with superscripts are taken in the direction of the downgoing ray from
xs to x, while the velocities with superscriptr at x are taken in the direction of the
upgoing ray formx to xr.

In the next section, stationary-phase analysis for this integral shows that replacing
the two phase velocitiesvr(x) andvs(x) in the scalar inner kernel above by the corre-
sponding group velocitiesV r(x) andV s(x) yields the GRA expression of the reflected
field from� due to point source atxs and observed atxr.
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THE STATIONARY-PHASE APPROXIMATION

We want to compute the stationary values of the surface scattering integral of the type

I = i!
Z
�
b(x) ei!T (x) d� ; (15)

assuming! to be a large number (j!j � 1).

The stationary points satisfy

@T

@�j
=

@T

@xk

@xk
@�j

=rT � tj = 0 ; i; j;= 1; 2 : (16)

wheretj, j = 1; 2 are the surface tangents. This condition is equivalent to Snell's law.
Assume now that the stationary point is regular, so thatdetH 6= 0, where the matrix
H has elements

Hij =
@2T

@�i@�j
=

@2T

@xn@xk

@xn
@�i

@xk
@�j

+
@T

@xk

@2xk
@�i@�j

; i; j = 1; 2 : (17)

Then the stationary value of the integral is (Bleistein, 1984, equation (2.8.23))

~I = i!

 
2�

j!j
!
jdetHj�1=2 ei

�
4
sgn(!) Sgn(H) b(~x) ei!T (~x) ; j!j � 1 ; (18)

where~x = x(~�) is the stationary point andSgn(H) is the signature of the matrixH,
i.e., the difference between the number of its positive and the number of its negative
eigenvalues.

The stationary point~x is a point of specular reflection, so thathspec(~x) = hr(~x)
andpspec(~x) = pr(~x). This gives rise to the following expression for the integral (14)
after stationary-phase evaluation

�Gmn(x
r; !;xs) ' 2� jdetHj�1=2 ei

�
4
sgn(!) [Sgn(H)+2] ei![T (~x;x

s)+T (~x;xr)

� hm(xr) a(xr; ~x)

[�(xr) v(xr)]1=2
M(~x)

R(x;xs) a(~x;xs)hn(xs)

[�(xs) v(xs)]1=2
d� : (19)

The nucleusM in equation (19) is given by

M(~x) =
2cijkl(~x)h

r
i (~x)h

r
n(~x) p

r
l nj

�(~x)[vs(~x) vr(~x)]1=2

=
2V r

j (~x)nj

[vs(~x) vr(~x)]1=2
= � 2V r cos �r

[vs(~x) vr(~x)]1=2
; (20)

where we have used that (see., e.g., Cerven´y, 1995)

cijkl(~x)h
r
i (~x)h

r
n(~x) p

r
l = V r

j (~x) (21)
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is thejth component of the group velocityVr(~x) of the reflected ray in direction to
the receiver. Also,V r = jVrj and�r is the angle between the normal and the ray from
xr to ~x, as shown in Figure 1.

Interestingly enough, if we replace the phase velocities with the corresponding
group velocities in the above expression, the result is

M = �
�
V r

V s

�1=2
cos �r : (22)

When this is used in the stationary-phase evaluation (19) of equation (14), we obtain
the expression

� ~G(xr; !;xs) =
h(xr)

[�(xr)v(xr)]1=2

�
~R(~x;xs)

e�i
�
2
sgn(!)�(xr ;~x;xs)

4�jdetQ
�

2(x
r; ~x;xs)j1=2

� ei!T (x
r;~x;xs)

�
hT (xs)

[�(xs)v(xs)]1=2
: (23)

which has the form of the GRA Green's function for the reflected wave with the
energy-normalized reflection coefficient

~R(~x;xs) = R(x;xs)

"
V r(~x) cos �r

V s(~x) cos �s

#1=2
; (24)

relative geometrical spreading factor

jdetQ
�2(x

r; ~x;xs)j1=2 =
������
detH detQ

�
2(~x;x

r) detQ
�

2(~x;x
s)

cos �r cos �s

������
1=2

; (25)

KMAH index

�(xr; ~x;xs) = �(~x;xr) + �(~x;xs) + [1� Sgn(H)=2] ; (26)

and reflection traveltime

T (xr; ~x;xs) = T (~x;xr) + T (~x;xs) : (27)

These expressions were also obtained in Ursin and Tygel (1998).

CONCLUSIONS

We have used a generalized Kirchhoff-Helmholtz approximation in the Kirchhoff inte-
gral for anisotropic media. The upgoing field at the interface was replaced by the spec-
ularly reflected field, as approximated by the GRA. Within the validity of the GRA, the
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new integral formula can be used to compute multiply reflected and converted waves
in anisotropic media. This also includes a possible wave-mode conversion at the inter-
face.

The stationary-phase analysis of the new integral resulted in an approximative
GRA Green's function. The amplitude at the receiver is given by a factor that includes
the correct geometrical-spreading factor and a close approximation to the energy-
normalized reflection coefficient. The exact GRA for the reflected wavefield is ob-
tained by replacing the phase velocities with the group velocities in the source and
receiver Green's functions at the scattering surface when computing the integral for
the reflected wavefield.
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Figure 1: Geometry at the reflecting interface


