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ABSTRACT

Kirchhoff-type, isochrone-stack demigration is the natural asymptotic inverse to clas-
sical Kirchhoff or diffraction-stack migration. Both stacking operations can be per-
formed in true amplitude by an appropriate selection of weight functions. As Kirch-
hoff migration is usually understood as the inverse process to Kirchhoff modeling, the
natural question arises whether Kirchhoff demigration is identical to seismic forward
modeling. The answer is that it is not, but these processes are closely enough related
to enable the use of demigration for modeling purposes. All that has to be done is
to implicitly construct a depth section as if obtained from a previous true-amplitude
Kirchhoff migration.

INTRODUCTION

To transform a given time section into a depth-migrated section in which the migrated
seismic pulses along the reflectors are free from geometrical-spreading losses, one may
employ true-amplitude Kirchhoff-type (or diffraction-stack) depth migration (see, e.g.,
Bleistein, 1987; Schleicher et al., 1993; Sun and Gajewski, 1997). Neglecting all other
factors that affect seismic amplitudes (Sheriff, 1975) and ignoring multiple arrivals, the
true-amplitude, depth-migration output at each point of a reflector is a measure of the
reflection coefficient. This coefficient pertains to the primary-reflection ray joining the
source to the receiver position in the given measurement configuration. The considered
point on the reflector is the specular reflection point of this ray.

The Kirchhoff migration integral is often understood, in an asymptotic sense, as
the inverse operation to the classical Kirchhoff integral. In the same way as the Kirch-
hoff integral can be used to propagate a given incident wavefield from the reflector
location to the receiver point, the Kirchhoff migration integral serves to reconstruct
the Huygens' secondary sources along the reflector in position and strength from the
measured wavefield at several receiver positions along the seismic line.
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Most recently, a new process has been introduced in seismic reflection imaging
being calledseismic demigration.It has been discussed in more detail by Hubral et
al. (1996) and mathematically described by Tygel et al. (1996). It has been designed
as the inverse process to seismic migration and is, thus, easily confused withseismic
forward modeling. In this paper, we want to clarify in a simple way the similarities
and differences of modeling and demigration. All three processes cannot be com-
pletely understood without talking about “true amplitudes,” i.e., the correct treatment
of geometrical-spreading effects. We will see that there exists a close relationship be-
tween seismic modeling and demigration, which needs to be understood and which we
shortly want to elaborate.

For this purpose, we start by investigating in more detail the new process of seismic
demigration. Technically, it is given by a stack to be performed on a depth-migrated
section: In the same way as the Kirchhoff migrated section is constructed by stacking
the original seismic data along certain model-based stacking surfaces (or lines in 2D)
without the need to determine the location of the reflection traveltime surfaces in the
seismic section, its inverse can be realized by a similar stack along related surfaces
without knowing the location of the reflectors in the migrated section. The stacking
surfaces are simply the isochrones, i.e, the surfaces of equal reflection traveltime be-
tween a given source and the corresponding receiver. These are also constructed on
the given macrovelocity model without knowing the location of the reflectors in the
migrated section.

The fact that the Kirchhoff migration integral seems to have two inverse integrals
leads to the obvious question posed in the title of this paper: Are the two operations
represented by these integrals identical? The answer is that, although closely related,
the two processes are not identical. Let us elaborate on this in more detail in the next
section.

MODELING VERSUS DEMIGRATION

In this section, we will briefly discuss the terms “forward modeling” and “demigration”
so as to clarify their meaning. We will, then, immediately recognize the similarities
and differences between the concepts.

Modeling

Modeling, as we understand it, means the analytical or numerical simulation of a phys-
ical process given all the equations and parameters for its complete description. In our
case, the physical process to be simulated is seismic wave propagation. It is described,
e.g., by the elastic or acoustic wave equation. The parameters that govern this process
are the velocity and density distributions within the medium, the source and receiver
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locations, the source wavelet, as well as the appropriate boundary and initial condi-
tions. Seismic forward modeling is, then, realized by an implementation of a solution
to the appropriate wave equation or of a suitable approximation. In this way, one ob-
tains a synthetic equivalent of the seismic data that would have been recorded if the
very same experiment had been actually carried out in the field. For a layered model,
we need, in particular, the location of the all transmitting and reflecting interfaces.

For reasons of comparison, we choose the well-known Kirchhoff integral to repre-
sent a seismic forward modeling scheme. It can be written as (Frazer and Sen, 1985;
Tygel et al., 1994a)

K(�; t) =
1
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whereK(�; t) denotes the modeled synthetic seismogram andz = �R(x) is the re-
flector along which we have to integrate. Here,� denotes the so-called configuration
parameter (Bleistein, 1987; Schleicher et al., 1993) which locates the source-receiver
pair, andx is the horizontal coordinate of the depth points. Note that� andx are two-
dimensional vectors or simply scalars for three- or two-dimensional modeling, respec-
tively. In equation (1), the kernel or weight functionW (�; PR) consists of an obliquity
factor and two Green's function amplitudes. The latter pertain to the wave propagation
along the two paths from the sourceS(�) to the pointPR = (x; z = �R(x)) on the
reflector, and from there to the receiverG(�). Moreover,R(PR) denotes the specular
plane-wave reflection coefficient of the incident wave at the reflector pointPR. Finally,
F [t] is the analytic pulse that is chosen to represent the source signature and

� (�; PR) = T (S(�); PR) + T (G(�); PR) (2)

is the sum of traveltimes along the two paths of propagationSPR andGPR, where
S(�) andG(�) are fixed andPR varies along the reflector. We remind that for layered
media, an integral of the type of equation (1) has to be solved along each interface.

Demigration

Demigration, on the other hand, uses a conceptually different approach. The aim of
demigration is to reconstruct a seismic time section from a corresponding depth mi-
grated section. In other words, demigration aims to invert the process of migration. Of
course, as migration is aimed at inverting the wave propagation effects, it is related in
a strong way to the wave equation. Observe, however, that migration algorithms are
based on a wave equation that does not use the true velocity distribution in the Earth,
but an approximate macrovelocity model that may be much simpler. Correspondingly,
demigration, as the inverse process to migration, also uses, instead of the true, but
generally unknown velocity distribution, the same macrovelocity model as used in mi-
gration. As opposed to direct forward modeling, we do not have to precisely know
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all the true model parameters to actually perform the demigration process. Neither the
true velocity distribution in the earth, nor the source wavelet nor, above all, the position
of the reflecting interfaces have to be known in order to apply a demigration. All that
is needed, apart from the seismic image section to be demigrated, is the macroveloc-
ity model that has been used for the migration process which produced the migrated
section.

From corresponding arguments as for Kirchhoff migration, a structurally

equivalent integral can be set up for its inverse operation called demigration (Hubral
et al., 1996; Tygel et al., 1996). The idea is to stack along a certain surface in the depth-
migrated data volume in such a way that any migrated event that possibly pertains to
a certain, fixed data pointN = (�; t) in the unmigrated section is summed up. This
process is represented by the Kirchhoff demigration integral

D(�; t) =
1

2�

ZZ
E
d2x WD(x; �; t) @zM(x; z)jz=�(x;�;t) ; (3)

whereD(�; t) denotes thedemigrated dataandM(x; z) represents the depth-migrated
section as obtained from a previous true-amplitude migration, although not necessarily
of Kirchhoff-type. Moreover,WD(x; �; t) is again a true-amplitude weight function
to treat amplitudes correctly. Like the one in Kirchhoff forward modeling, also this
weight function consists of an obliquity factor and the Green's function amplitudes
along the two ray branches from the source and the receiver to the depth point under
consideration. Also,E is the spatial aperture of demigration. The stacking surface,
z = �(x; �; t), is implicitly given by

t = � (�; x; z = �(x; �; t)) = T (S(�); P ) + T (G(�); P ) ; (4)

i.e., again by the very same sum of traveltimes (2) as used in Kirchhoff forward mod-
eling (1). As in Kirchhoff modeling,S(�) andG(�) are the points of the fixed source-
receiver pair. Other than in that case, however,P = (x; z) does not vary along the
reflectorz = �R(x) but along the surfacez = �(x; �; t) defined by equation (4) under
the condition thatt is a given, fixed constant. In other words,z = �(x; �; t) describes
the surface of equal reflection time orisochronepertaining to the fixed source-receiver
pairS andG and a given timet. This isochrone plays the same role in Kirchhoff dem-
igration (3) as the diffraction-time surface does in Kirchhoff migration. In both cases,
the stacks sum up all contributions that come from the Fresnel zones surrounding the
specular reflection points.

Let us now assume that the depth-migrated sectionM(x; z) consists of the image
of one target reflector. As shown in Tygel et al. (1994b), this image can be represented
in the form

M(x; z) = R(P ) F [S(x)(z� �R(x))] (5)

whereR(P ) is the reflection coefficient of the specular reflection atP , F [t] is the
source pulse, andS(x) is the stretch the pulse suffers in a previous migration process.
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As we will see below, this stretch factor will play an important role when demigration
is used as a modeling algorithm. Using equation (5), the above demigration integral
(3) can be written as

D(�; t) =
1

2�
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E
d2x WD(x; �; t) R(P ) @zF [S(x)(z� �R(x))]jz=�(x;�;t) ; (6)

Note the obvious similarities and differences between this form of the Kirchhoff dem-
igration integral and the above Kirchhoff modeling integral (1).

Like Kirchhoff migration, also Kirchhoff demigration does not depend on the num-
ber and location of primary reflections or reflector images. The demigrated section
will thus be a superposition of all demigrated reflector images (i.e., primary reflection
events) in the same way as the final image after a Kirchhoff migration is the superpo-
sition of all migrated images of all reflectors.

Comparison

The comparison of the above two expressions (1) and (3) shows that they are very sim-
ilar. Apart from the different stacking surfaces, we observe, however, two additional
conceptual differences between the two integrals. First, there is a slight difference
between the two weight functions. The obliquity factor of the Kirchhoff modeling in-
tegral is computed with respect to the reflector normal and the one of the Kirchhoff
demigration integral with respect to the isochrone normal. This is not a major differ-
ence as at the stationary point of both integrals, i.e., at the specular reflection point on
the reflector, both obliquity factors are identical. However, there is another, more basic
difference. This is the stretch factorS(x) that appears in the argument of the source
pulse in the demigration integral, but does not appear at the corresponding position
in the modeling integral. It was shown by Tygel et al. (1995) that the pulse stretch
caused by demigration is the inverse to that introduced by migration. In other words,
Kirchhoff demigration needs this stretch factor to “unstretch” the seismic signal by the
same factorS(x) by which Kirchhoff migration stretches it. Hence, after Kirchhoff
migration and demigration, no overall stretch factor remains in the resulting recon-
structed data. On the other hand, Kirchhoff forward modeling need not incorporate a
stretch factor because it isnot an inverse to a migration process but an independent
(approximate) solution of the wave equation.

Asymptotic inverses

For a certain given laterally inhomogeneous velocity model, we may construct syn-
thetic seismic primary-reflection data using Kirchhoff forward modeling as described
by integral (1). If we apply Kirchhoff migration to these synthetic data using the true
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velocity model, then the migration result will correctly image all model reflectors to-
gether with their corresponding reflection coefficients. Ideally, we would like to have
Kirchhoff migration reconstruct the original model, i.e., we would like migration to be
an (asymptotic) inverse to forward modeling. However, this is not the case. To actually
reconstruct the physical model, we need toadd another process, usually called inver-
sion,to identify the reflector locations and extract the model parameters from the mi-
grated section. We may then say that only the combined process of migration/inversion
is a complete (asymptotic) inverse to modeling.

On the other hand, we may apply Kirchhoff migration to some given field data, and
then Kirchhoff demigration to the resulting migrated section, using the same macrov-
elocity model in both operations. Then, the demigration result can be expected to
closely reconstruct the primary reflections of the original field data, Thus, Kirchhoff
demigration can be conceived as an (asymptotic) inverse to Kirchhoff migration.

From the above observations and speaking in an asymptotic sense, we conclude
that Kirchhoff modeling and demigration are two processes that are closely related but
not identical. Whereas Kirchhoff demigration is the inverse process to Kirchhoff mi-
gration, Kirchhoff modeling is the inverse operation to Kirchhoff migration/inversion.
Nevertheless, the Kirchhoff demigration integral (3) can be employed for modeling
purposes. In order to use Kirchhoff demigration in a process equivalent to Kirchhoff
modeling, we obviously have to add another process, which has to be a kind of “in-
verse operation to seismic inversion.” How this can be done is investigated in detail in
the next section.

MODELING BY DEMIGRATION

After we have answered the question in the title of this paper, let us briefly address
another inherent question: Can we make use of the demigration procedure for model-
ing purposes? The answer is: Yes, we can. For a given subsurface model, we have to
appropriatelysimulatea corresponding depth-migrated sectionas if obtained from a
previously applied Kirchhoff migration. In other words, given the source and receiver
positions, the reflector location within the velocity model, as well as the source signal
to be employed, we have to construct anartificial migrated section. This is done by
placing thecorrectly amplified and stretchedsource pulse into a seismic image along
the reflector. Application of demigration to such an artificial migrated section leads
to a “demigrated” section that is, in the high-frequency approximation, completely
equivalent to the result of the Kirchhoff modeling integral.

For technical reasons, we have to distinguish between modeling for zero or finite
offsets. For zero-offset modeling, the above-explained idea of modeling by demigra-
tion can be directly applied. All necessary quantities to construct the migrated image
for each reflector are physical parameters directly available from the a-priori specified
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Earth model.

For nonzero offsets, the stretch factor as well as the reflection coefficient at the
specular reflection point depend on the reflection angle of the specular reflected ray
betweenS(�) andG(�). This means, of course, that for each different source-receiver
pair in the considered measurement configuration, a differently scaled and stretched
wavelet is to be used because the reflection angle differs. Although this angle is not
available without previously determining the reflection ray betweenS(�) andG(�), it
can be obtainedduring the demigration process using the already computed Green's
functions. In this way, the amplitude and stretch factors are correctly determined,
although the artificial migrated section is actually never explicitly constructed. Its
construction is realized implicitly by the use of the location and form of the true-
amplitude target reflector image and the source wavelet during the stack at each point
on the isochrone (for details, see Santos et al., 1998).

NUMERICAL EXAMPLE

To demonstrate that seismic demigration is indeed different from seismic forward mod-
eling, but still can be used for modeling purposes, we have performed the following
numerical example. We consider a single seismic common-shot experiment performed
over the model depicted in Figure 1. This is a simple model in which a single trough-
shaped reflector separates two homogeneous acoustic media. The velocity above the
reflector is 2.5 km/s and below 2.8 km/s. The source is at a position with coordinate
x = �700 m and the receivers cover an offset range from 0 m to 3000 m. The source
pulse is a Ricker wavelet with an approximate duration of 128 ms, i.e., a dominant
frequency of about 16 Hz. Moreover, the model is assumed to be symmetric with re-
spect to the out-of-planey-direction. All sources and receivers lie in the planey = 0,
such that the wave propagation remains in-plane. In other words, we assume a 2.5-D
situation. The advantage of 2.5-D forward modeling is that actual 3-D wave propa-
gation effects can be modeled using fast and simple 2-D in-plane computations only.
Although simple, this trough model is interesting because the wave propagation in-
volves a caustic region which can be problematic for many modeling schemes. The
size of the caustic region can be estimated from the ray family pertaining to the chosen
acquisition geometry that is also shown in Figure 1.

The corresponding synthetic seismogram sections as obtained by different model-
ing schemes are depicted in Figure 2. Figure 2a shows the synthetic seismograms as
obtained from conventional zero-order ray theory. We observe, as usual, good mod-
eling results for the specularly reflected events in any part of the model except of the
region close to the caustic. As expected, the amplitudes of the wavefield in the caustic
are overestimated and the diffractions at the tails of the bow-tie structure are not mod-
eled. In Figure 2b, we see the corresponding seismograms as obtained from Kirchhoff
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forward modeling using the above integral (1). The synthetic seismograms are quite
similar to those of ray theory where the latter is expected to provide good results. Note,
however, the significantly lower amplitudes in the post-critical region. Additionally,
the Kirchhoff seismograms provide a good approximation of the wavefield in the caus-
tic region and even a good first-order estimate of the diffraction tails.

We next consider the application of modeling by demigration, which requires the
construction of an artificial migrated section to replace the given model. If this artificial
migrated section is constructed by simply attaching an unstretched seismic pulse along
the reflector (as could be done for Kirchhoff forward modeling), then, the application
of the demigration operator leads to the seismogram of Figure 2c. Note the severe
discrepancies of the wavelet's shape for farther offsets in comparison to the correct
synthetic data of Figure 2b. However, the seismogram section of Figure 2c should be
identical to that of Figure 2b if demigration were equivalent to modeling, because here,
the same input was used, namely (i) the specular plane-wave reflection coefficient of
the incident field, (ii) the source wavelet, and (iii) the traveltime in the overburden. We
observe that, in order to use demigration for modeling purposes, one must not neglect
the stretch. Thus, indeed, seismic demigration is not equivalent to forward modeling.

Let us now construct the artificial migrated section by attaching to the reflector a
correctly varying stretched pulse as prescribed by the theory of demigration. Then,
the application of the demigration operator results in the synthetic seismogram section
depicted in Figure 2d. Note that the latter one is practically identical to the result of
Kirchhoff forward modeling in Figure 2b. Even the tail diffractions from the caustic
bow-tie structure are modeled with the same accuracy. However, in the post-critical
region, the amplitudes in Figure 2d follow more closely those in the ray-synthetic
seismograms (Figure 2a).

Figure 3 shows the input depth sections for Kirchhoff modeling and for modeling
by demigration. In Figure 3a, we see the seismic source pulse, scaled with the plane-
wave reflection coefficient, but without stretch, attached to the reflector. Note the
high amplitudes in the region of post-critical reflections. This is the effective input to
the Kirchhoff forward modeling integral (1). Kirchhoff modeling is then realized by
integrating along the reflector (indicated by a solid line) in order to construct the

synthetic seismograms of Figure 2b. If we use demigration on this depth section,
we get the synthetic seismograms of Figure 2c which do not exhibit correctly modeled
seismic reflection events. It is, in fact, theartificial migrated sectionshown in Fig-
ure 3b that is the correct input depth section for modeling by demigration. Observe the
wavelet with varying stretch attached to the reflector. Only using this artificial migrated
section, demigration can be used for modeling purposes. The synthetic reflection seis-
mograms are then obtained by stacking along isochrones like the three indicated ones
for a receiver at an offset of 2000 m.

Note that it is a section like the one of Figure 3b that would be obtained by a
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common-shot true-amplitude Kirchhoff depth migration applied to the synthetic data
of Figure 2b. The behavior of the pulse stretch is as described by Tygel et al. (1994b).
Let us stress once more that this artificial migrated section is never actually constructed
in the modeling-by-demigration process. It is shown here for didactical reasons only
and has been computed independently.

MODELING OR DEMIGRATION

Although the two integrals describing Kirchhoff forward modeling and Kirchhoff dem-
igration both appear to be inverses to Kirchhoff migration in an asymptotic sense, we
have seen that they do not exactly coincide. Their relationship was recently investi-
gated by Jaramillo and Bleistein (1997). By using high-frequency asymptotic argu-
ments, they have shown that the Kirchhoff modeling integral can be actually trans-
formed into the Kirchhoff demigration integral. To the leading order, one may, thus,
interpret the demigration integral as a nothing else but a “reorganized Kirchhoff mod-
eling integral.” However, apart from the practical realization, also the physical in-
terpretation of this new integral is different. Unlike the Huygens' secondary source
contributions in the Kirchhoff integral, it is now the individual Fresnel zone contribu-
tions to each primary reflection that are summed up by the integration (Schleicher et
al., 1997).

What are, then, the advantages of implementing a seismic modeling scheme us-
ing the Kirchhoff demigration integral instead of the conventional Kirchhoff modeling
integral? Well, in fact, there exist several reasons:

� The actual process of true-amplitude Kirchhoff demigration is, structurely, very
similar to true-amplitude Kirchhoff migration. Therefore, existing migration
programs (which are nowadays, of course, highly developed and very effective)
can be readily modified to include demigration. The latter, as we have seen
above, can then also be used for seismic forward modeling.

� Demigration is a process that becomes more and more important in the seismic
processing sequence. Its main objective is to verify and improve the macrove-
locity model. Thus, seismic modeling can be done with a software that is also
useful for reflection-imaging purposes and thus already available. There is no
need for an additional independent seismic forward modeling program.

� For an identical macrovelocity model, migration, demigration, and modeling by
demigration need the same Green's functions. This implies that, once any one
of the three processes has been applied to some data for a given macrovelocity
model, the remaining two will become significantly less expensive.
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� Modeling by demigration turns out to be particularly advantageous when the
effects of small reservoir changes are to be modeled, as is the case in 4-D or time-
lapse imaging. As only the reflector properties change, but not the overburden
macrovelocity model, the same Green's functions can be used several times, thus
making modeling by demigration less expensive than other schemes that have to
start all over again.

� As demigration is a stacking process, it “smoothes” the simulated reflection re-
sponses (in contrary to, e.g., standard ray theory that computes arrival times and
amplitudes along specular rays only and thus produces sharp shadow bound-
aries). Thus, there is no need for constructing smooth reflectors (e.g., by ap-
plying splines) or explicit two-point ray tracing. Modeling by demigration can
be directly applied to the conventionally picked reflectors that are usually a se-
quence of planar reflector elements. This will not cause any damage to the sim-
ulated reflection response.

� Whereas Kirchhoff modeling needs an integration along the reflector and, thus,
has to be applied to each reflector independently, demigration uses as its input a
depth-migrated section. Therefore, it needs just to be applied only once to model
primary reflections for a whole set of different subsurface reflectors.

� Due to the limited extent of an isochrone, the stacking aperture of modeling by
demigration will, in general, be smaller than that of Kirchhoff forward modeling.

� Because the demigration integral sums only contributions from the actual Fres-
nel zone surrounding each specular reflection point, the stacking aperture can be
even further reduced.

It should be kept in mind, however, that Kirchhoff demigration is a process as expen-
sive as Kirchhoff migration. It may, thus, be disadvantageous in comparison to other
seismic modeling schemes when applied only once for a given velocity model or for
a few reflectors only. Moreover, modeling by demigration can, at the present stage,
provide primary reflections only. The description of multiples by this process has not
been investigated yet.

CONCLUSIONS

In this paper, we have discussed the properties of a new seismic imaging process called
demigration. Kirchhoff demigration is based on the same assumptions as Kirchhoff
migration. It is realized in a completely analogous way by a weighted stack of migrated
data along constant-reflection-time surfaces. This process has been introduced in the
seismic literature as the most natural inverse process to migration (Hubral et al., 1996;
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Tygel et al., 1996). We have shown that although closely related, seismic demigration
is not identical to seismic forward modeling.

With this in mind, we have to revise the widespread and commonly accepted belief
that “seismic migration is the inverse process to seismic forward modeling.” We have
seen that it is not forward modeling but seismic demigration that deserves to be called
the “inverse of seismic migration.” The true inverse to forward modeling is, in turn,
the process of migration/inversion.

Although not identical to modeling, seismic demigration can be very conveniently
used for this purpose. For a given subsurface model, the modeling process consists,
in principle, of two steps, namely (i) transforming the model into a fictitious, true-
amplitude depth-migrated section and of (ii) applying to this artificially generated mi-
grated section a true-amplitude demigration. In the actual implementation, the con-
struction of the artificial migrated section is done implicitly thus combining the two
steps. In this way, the new modeling technique called “modeling by demigration” is,
in fact, a one-step process.

Because the stacking procedure employed in modeling by demigration is inde-
pendent of the reflector shape, the new method will provide good-quality synthetic
primary-reflection data even for nonsmooth reflectors. Also, because of its structure
in the use of the macrovelocity model, modeling by demigration seems to be particu-
larly appropriate for 4-D or time-lapse applications. First tests for simple Earth models
confirm these observations (Santos et al., 1997).
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Figure 1: Model and ray family for the numerical common-shot experiment.
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Figure 2a: Synthetic seismograms as obtained by zero-order ray theory.
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Figure 2b: Synthetic seismograms as obtained by Kirchhoff forward modeling.
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Figure 2c: Synthetic seismograms as obtained by direct demigration applied to the
depth section in Figure 3a.
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Figure 2d: Synthetic seismograms as obtained by correct modeling by demigration
applied to the depth section in Figure 3b.
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Figure 3a: Input section for Kirchhoff forward modeling. Theunstretchedsource
wavelet is attached to the reflector.
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Figure 3b: Input section for modeling by demigration. Thecorrectly stretchedsource
wavelet is attached to the reflector.


