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ABSTRACT

The modeling of elastic waves with an explicit Finite Difference (FD) scheme on a
staggered grid can cause instability problems when the medium possesses high con-
trast discontinuities. We have derived a new rotated staggered grid where all medium
parameters are defined at appropriate positions within an elementary cell for the fol-
lowing operations. Using this grid it is possible to simulate the propagation of elastic
waves in a medium containing cracks, pores or free surfaces without applying bound-
ary conditions. In this report we show a synthetic example and compare the stability
limit and the dispersion error for the new rotated staggered grid with the results of the
standard staggered grid.

INTRODUCTION

An often used way of modeling the propagation of elastic waves are FD methods, dis-
cretizing the elastodynamic wave equation. They can be separated in time domain FD
methods [Dablain (1986); Kneib and Kerner (1993)], using the 2nd order wave equa-
tion, and velocity stress methods, solving two coupled first order equations [Virieux
(1986); Levander (1988)]. Using a staggered grid, where spatial derivatives are de-
fined halfway between two grid points, both methods have the same locations of the
modeling parameters within an elementary cell. A major disadvantage of a standard
staggered grid is the fact that some modeling parameters are defined on inter grid lo-
cations, such that they have to be averaged or the grid values halfway have to be used.
This leads to inaccurate results or instability problems when the propagation of waves
in media with strong fluctuations of the elastic parameters (cracks, pores) is simulated.
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DIFFERENT STAGGERED GRIDS

The FD modeling scheme bases on the discretization of the elastodynamic wave equa-
tion [Gubernatis et al. (1977)]:

p(r)is(r) = (Ciju(r)up(r)),; + f(r)

Here,u denotes the displacemeidt;;;,; denotes the stiffness tensor ands the den-

sity. In this equation we used standard tensor index convention. Indices that occur
twice imply summation. The subscripf denotes differentiation with respect to the
coordinatey.

Neglecting outer forces and boundary conditions, we have the following operations to
calculate the acceleratian starting from the wavefield :

We calculate; = uy,.

We calculate the stress; = C;jxug .

We calculate the divergence of the stress.

We calculate the acceleratiain = %am.

The following step is the time update: calculating the wavefield at the next timestep
from acceleration and the wavefield at the previous timesteps. This requires accelera-
tion and the wavefield to be defined at the same position within the grid. On a staggered
grid, spatial derivatives are located between the original points. This has the effect of
much better results for numerical dispersion compared with centered grids, especially
for the case of high-order spatial derivation operators. Considering the above opera-
tions, necessary for calculating the acceleration and taking into account the definition
of a staggered grid, Virieux (1986) came up with the elementary cell for an isotropic
elastic medium given in Figure 1 .

X LEN
Figure 1: Locations, where l‘»
strains, velocity (displacements), z
and elastic parameters are defined v, g v,
by Virieux (1986). Note, that the ' p oo €2z 1p
velocity components are not de-
fined at the same locatioms and
w denote the Lam parameters. K\ Caz Uz P

We can see that within an elementary cell there are two density locations and two
locations where the Laenparametey: is defined. Hence, we have to interpolate den-
sity and shear modulus. The density is defined at the corners but are needed halfway
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each side of the cell. Therefore, they can be interpolated. The remaining problem is
the accurate averaging of the shear modulus at the corners of the cell, and we have
found no general solution of this problem in literature. An often used method [Kneib
and Kerner (1993)] is to take the medium parameters of the cell for the side and corner
locations, taking not into account that medium and wavefield parameters are multiplied
which are not located at exactly the same position. This results directly in instability
problems, if the medium contains very high contrasts.

The problems described above can be overcome if we find a grid, where all parameters
are defined at positions so that no averaging of modeling parameters is necessary and
no medium parameters from disadvantageous position have to be used. Starting with
the assumption that all stiffness tensor elements are located at the same position, we
arrive directly at the elementary cell of the new rotated staggered grid given in Figure
2 . Inthis grid, no averaging of elastic parameters is necessary. With this modified grid
we can model a medium that contains very high contrasts of the elastic parameters and
of the density.
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Figure 2: Locations where strains,
displacements, density, and elastic @ \
parameters are defined on the new< . 6.”6
rotated staggered grid. Spatial z wTETE
derivations are performed along
the 7- andz-axes. p p

Uy Uy Uy Uy

Considering the grid in Figure 2, the next step is to give up the limitation of
isotropic media and of quadratic elementary cells. We find that all elements of the
stiffness tensor are located at the position @ind., therefore the grid can be applied
to all kinds of anisotropy (up to triclinic).

DISCRETIZATION OF DERIVATIVES

Since the wave equation contains derivatives in x- and z- direction and the modeling
scheme contains derivatives along theand z-axes, we have to express derivatives
along the old (x- and z-) axes in terms of derivatives along the new axes. For the new
rotated staggered grid we find£ and D; are the differentiation operators along the

z- andz- directions):
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JA? 2
gu(z,x,t) ~ M(Dgu(z,x,t) — Dzu(z,z,t))
0z 2Az
JA? 2
agu(z,x,t) ~ %(Dgu(z,x,ﬂ + Dzu(z,z,t))
T T

MODELING EXAMPLE

The modeling result given in Figure 3 we obtained using the new rotated staggered
grid. Using a standard staggered grid [eg. Kneib and Kerner (1993)], this simulation
could not be done because the modeling was unstable for high contrasts of the elastic
parameters.
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Figure 3: On théeft side a heterogeneous concrete model with a defect, i.e. the crack,
is shown. The ellipses represent gravel within cement. The concrete model is bounded
by a thin layer of air. Theight figure shows a Z-snapshot after a part of a plane wave
has been reflected by the crack.

As medium we used a concrete model with a crack. Such a sample was used for
non-destructive testing with ultrasound by other groups in our research project. At
the interfaces of air-concrete we have very high contrasts of the elastic parameters
and the density. The crack also consists of air. Modeling was done without applying
any boundary conditions. We use a modified version of the Finite Difference program
ULTIMOD [Karrenbach (1995)] to do the calculations with the new rotated staggered
grid.
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STABILITY AND DISPERSION

Since FD modeling approximates derivatives by numerical operators and uses Taylor
polynomials to perform the time update, inaccuracies occur, especially for coarse grids.
One can separate these numerical errors into amplitude and phase errors. In principle,
for a plane wave propagating through a homogeneous medium, the amplitude must be
conserved, and the velocity of propagation should not be frequency-dependent. In FD
modeling, itis possible that the amplitude increases exponentially with every timestep.
In this case, the modeling scheme is said to be unstable. Velocity errors, also called
numerical dispersion, can not be excluded completely but can be estimated and, there-
fore, reduced to a known and acceptable degree. The goal of this section is to give the
stability limit (von Neumann, for more details see eg. Crase (1990)), and to show the
dispersion error in the case df ®rder spatial derivatives and &drder time update.

The results for the standard staggered grid [eg. Kneib and Kerner (1993)] and for the
new rotated staggered grid are given in order to compare in section and in section .
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Results for the standard staggered grid

The stability limit for thestandard staggered grid [eg. Kneib and Kerner (1993)] is
(2D, 2 order in time, h := grid spacing,, := coefficients of the space operator):

Vmae AR <1/ (V23 Ja,|) (o0 =100%)

w

Figure 4: Relative accuracy of “
phase velocity for thestandard , ,|
staggered grid (2D). The propaga=

tion angle relative to the grid ig°. 3 *
Curves are computed with secondl |

order in time and 8 order in space. 5 7 oot

o= %
The value ofr denotes the percent= 0.9+ 0=91%
age of the respective stability limit. 0 = 46%

o =20%
The vertical dashed line shows the 0 0.1 O-J}Qridpomgs- 3 0.4 0.5
limit of the dispersion criterion.
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Figure 5: Relative accuracy of 2| o = 100%
phase velocity for thestandard =, ,|
staggered grid. The propagatiog
angle relative to the grid i$5°. The 51
value of s varies from 100% (top);"ol ol
over 91% and 46% to 20% (bot-
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To avoid a relative error in phase velocity of more than 1%, when usingtére
dard staggered grid, one has to satisfy the following two criteria (23,02der in
time, 8" order in space, Central Limit coefficients [Karrenbach (1995); Kindelan et al.
(21990))):
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1. Stability criterion §tandard staggered grid):

UmaeAt/h < 0.25 2 46% x 1/(vV2Y  |an]) (= o = 46%)

2. Dispersion criteriongtandard staggered grid):

;me /h >3 (seethe dashed line in Fig.4 and in Fig.5)
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Results for the new rotated staggered grid

The stability limit for the newotated staggered grid is (2D," order in time, h :=
grid spacingg, := coefficients of the space operator):

OB < /(D lanl) (o =100%)
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Figure 6: Relative accuracy of * 0 =100%

phase velocity for the newotated , ,|
staggered grid (2D). The propaga=
tion angle relative to the grid ig°. 3 *
Curves are computed with secondl |
order in time and 8 order in space.
The value ofr denotes the percent= 0.9+

age of the respective stability limit. et
The vertical dashed line shows the 0 0.1 O-J}Qridpomgs- 3 0.4 0.5

limit of the dispersion criterion.
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Figure 7: Relative accuracy of *
phase velocity for the newotated =,

staggered grid. The propagatiof oI
angle relative to the grid i$5°. The 51
value of s varies from 100% (top);"ol ol
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To avoid a relative error in phase velocity of more than 1%, when using the new
rotated staggered grid, one has to satisfy the following two criteria (2B pfder in
time, 8" order in space, Central Limit coefficients [Karrenbach (1995); Kindelan et al.
(21990))):
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1. Stability criterion (newotated staggered grid):
Umae At/ < 0.25V2 = 46% x 1/(Y" |a,|) (= o = 46%)

2. Dispersion criterion (newotated staggered grid):

;me /h > 3V2 (see the dashed line in Fig.6 and in Fig.7)

CONCLUSION

The grid modifications shown in this report enable modeling of arbitrary inhomo-
geneities without boundary conditions in two and three dimensions, as well as in all
kinds of anisotropic media. The dispersion analysis shows that there is no essential
difference in phase velocity error between the standard staggered grid and the new
rotated grid. Until now, no limitations concerning applications of the modified grid
have been found by the authors. Thus, a major improvement of FD modeling has been
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