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Wave propagation on irregular grids
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ABSTRACT

By solving the wave equation on regular or irregular grids wave propagation can be
studied in any complex model 2D and 3D. However, the model complexity is limited
by the computer capacity. Pseudospectral methods have the advantage of being exact
in terms of spatial derivatives and therefor require less grid points per wavelength
then finite difference methods. Models with curved layer boundaries, however, require
a dense grid spacing to avoid diffraction. By introducing curved grids with layer
boundaries aligned to the grid, this problem can be solved.

INTRODUCTION

Pseudospectral methods are useful tools for solving the wave equation on 2D and 3D
grids. Since the spatial derivatives are exact one can choose a coarser grid and there-
for larger time steps. Thus, one can speed up numerical simulation runs by several
times (Fornberg, 1987). Furthermore, no dispersion effects due to discretisation errors
occur. Interfaces not aligned with the grid, however, lead to other undesired effects.
The corners in the disc1retisation of a layer boundary not aligned with the grid act
as diffractors. To avoid this unphysical noise the grid spacing must be reduced. In
such cases the advantages of a coarser grid using pseudospectral methods can not be
used. We introduce a simple mapping scheme to a Chebyshev code and align the
layer boundaries with the grid. Similar schemes were applied by Fornberg (1988) and
Tessmer and Kosloff (1993).

METHOD

Our code is based on the Chebyshev Collocation method (Augenbaum, 1990; Carcione
and Wang, 1993). The solution of the wave equation is expanded in terms of Cheby-
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shev polynomials. In the computational domain the grid is defined by the Gauss–
Lobatto collocation points. Since this grid becomes very fine near the grid boundaries,
a one–dimensional stretching function is applied for each coordinate in order to in-
crease the time steps for the integration. For the forward integration in time we use a
fourth order Runge–Kutta scheme. Absorbing boundary conditions are imposed by a
characteristic treatment.

Layer topogrophy is introduced by mapping the stretched rectangular grid onto a
curved grid. All formulae are written for the 3D case. The physical curved grid has
the coordinatesX, Y andZ. The mapping functions are

X(x; y; z) = x

Y (x; y; z) = y

Z(x; y; z) = z + g(x; y; z)

with the topography functiong(x; y; z). In our case we requireg to be a continuous dif-
ferentiable function. By the mapping only the z–coordinates are altered. Additionally,
the topography function is tapered by a sinus function in z to obtain flat boundaries.

For the velocity–stress formulation we then yield:
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where� and� are the Lam�e parameters and� is the density. The termscx, cy andcz
denote products of derivatives of the topography function.



279

EXAMPLES IN 2D

In order to test the accuracy we chose a homogeneous model (1000�1000m, 161�161
grid points) and located the explosive source in the center of the model volume. As
topography function we used a sinus function with an amplitude of 20m and a wave-
length of 500m. Figure 1 shows the wavefront after 80 ms.

Figure 1: Wavefront after 80 ms.
Every 5th gridline is displayed. The
wavefront is not altered by the
transformed grid. The star marks
the source location.

Another example studies the effect of layer topography up to subwavelength scale
onto the reflection amplitudes. Here, we chose a layer boundary with a syncline di-
rectly underneath the source. The halfwidth of the syncline varies from 4� to 0.5� with
� being the dominant wavelength of the source signal. For all four models we used the
same number of grid points. In order to avoid interference with the direct wave, source
and receivers are situated at the same depth. All boundaries are absorbing. Figure 2
and 3 show the corresponding snapshots and seismograms.

CONCLUSION

This technique enables us to simulate wave propagation in 2D and 3D in acceptable
time. It can be used to study the reflection properties of media with laterally varying
layer boundaries. The technique can be extended to include arbitrarely shaped topog-
raphy functions, e.g. by using spline functions.
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Figure 2: Snapshot after 240 ms. The amplitudes are normalized to the maximum of
all plots. Layer velocities are displayed in the upper left plot. The black line marks
the layer boundary, the star the source location and the crosses the receiver locations.
Above the layer boundary at 200m we see the reflected p–wavefront followed by the p–
t–s converted wavefront. Below the boundary we see the p–to–s converted transmitted
wavefront. In the lower right plot strong diffractions occur at the flanks of the through.
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Figure 3: Seismograms corresponding to figure 2. The amplitudes are normalized to
the maximum of all plots. The first arrival is the reflected p–wave followed by the
p–to–s conversion. The focussing effect is strongest for syncline 3.


