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ABSTRACT

Coherency measures are widely used in the analysis of seismic data. The founda-
tions of many coherency measures are the concepts of linear correlation and stochas-
tic processes. These concepts are briefly reviewed and, based on them, a standard
coherency measure, the statistically normalized crosscorrelation measure, is derived.
The possible uses of coherency measures in seismic data processing are various. Each
time, however, the input data, a theoretical moveout model and a coherency measure
are combined to analyze the data. With a synthetic example it is shown how coherency
analysis can be used to detect multiple reflections in CSP gathers.

INTRODUCTION

With the use of multichannel data coherency analysis was introduced to the standard
processing sequence of seismic data. With it, statistical concepts were applied to mul-
tiple channels (Schneider and Backus, 1968; Taner and Koehler, 1969). The formula-
tions of early coherence functions constitute generalizations to existing statistical cor-
relation coefficients (Bendat and Piersol, 1986). With a brief review, the underlying
statistical concepts are explained. Based on these concepts the statistical normalized
crosscorrelation measure is derived. As a second important utility the formulation of
a theoretical traveltime model goes into the examination. The combination of input
data, moveout model and coherency measure constitutes the framework of coherency
analysis. One possible combination is applied to detect multiple reflections in CSP
gathers. Various other possible applications are mentioned.

BASIC CONCEPTS

In the next three sections I give a brief review of the concepts oflinear correlation, sto-
chastic processesandtime-series analysiswhich are fundamental in the development
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of coherency measures, such asnormalized crosscorrelationor semblance.

Linear Correlation

In probability the concept ofrandom variablesis introduced. A random variable is a
function that assigns a real number to each outcome of arandom experiment. A ran-
dom experiment is characterized by the fact that its possible output is not predictable.
Themeanor expected valueof a discrete random variableX is

�X = E(X) =
X
x

x pX(x)

where
P

x is the sum over the set of all possible values of the random variable and
pX(x) is theprobability mass functionfrom this set.
Thevariance�2 of a random variableX is defined as

�2X = E(X � �X)
2 =

X
x

(x� �X)
2 pX(x)

If we consider two random variables a measure of the possible relationship between
them is thecovariance:

�XY = E[(X � �X)(Y � �Y )]

whereas
E[(X � �X)(Y � �Y )] =

X
R

(x� �X)(y � �Y ) pXY (x; y)

is the weighted average of the product of the deviations of the two random vari-
ables from their mean values. The weight is here thejoint probability mass function
pXY (x; y).
Another measure of the relationship between two random variables is thecorrelation
coefficient�XY . It is just a scaled version of the covariance.

�XY =
�XY

�X�Y
� 1 � �XY � +1

Two random variables with nonzero correlation are said to becorrelated. Note that
both covariance and correlation are measures of thelinear relationshipbetween ran-
dom variables.

In practical situations where a finite sample of measurements is observed the accu-
racy of a linear relationship can be estimated by thesample correlation coefficient

R =
SXYp
SXXSY Y

� 1 � R � +1 (1)

with SXY =
Pn

i=1(xi� x)yi, SXX =
Pn

i=1(xi� x)2 andSY Y =
Pn

i=1(yi� y)2, where
n is the sample size.
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In the next section the concept ofstochastic processesis introduced which con-
stitutes the statistical basis fortime-series analysisand makes it possible to apply the
concept of linear correlation to time series.

Stochastic Processes

The concept of stochastic or random processes is used to describe data representing
random physical phenomena. The hypothetical structure of the data of a stochastic
processfX(t)g consists of a infinitely large ensemble of time-history records or time
functions. The continuous time functions reach from minus infinity to plus infinity
in time. At any instant of time the values over the ensemble represent all possible
outcomes of a random experiment. Thus, at any instant of time(ti) a random variable
X(ti) can be defined. The statistical properties of each random variable are computed
by constituting the average over the ensemble of time functions.

For example, suppose the ensemble values of the random variableX(t1) at time
t1 arex1(t1); x2(t1); : : : ; xN(t1). Then theexpected valueor mean valueis obtained
computing theensemble average

�X(t1) = E(X(t1)) = lim
N!1

1

N

NX
k=1

xk(t1)

assuming the ensemble values to be equally likely.

In general, the ensemble values may come from a continuous sample space with
infinite extension and may also be weighted by aprobability density functionp(x).
In this case we define theexpected valueof a random variableX(t) at arbitrary fixed
values oft in the form

�X(t) = E(X(t)) =
Z 1

�1
x(t) pX(x(t)) dx(t) (2)

A stochastic processis completely defined by constituting all available statistical quan-
tities over the ensemble. In general, the values of these quantities are different at dif-
ferent times. In the case where the statistical quantities do not vary with time the
stochastic processes are calledstationary.

In the case of stationarity there exists a subclass of stochastic processes for which
the statistical quantities computed astime averagesare equal to the corresponding
ensemble averages. Theseergodic processesconstitute the statistical foundation to
analyze time series in seismic applications.

The time averageof a stochastic process is performed by computing the average
over the time range of a single realization from the ensemble of time functions. That
is, only one time record is necessary to describe the statistical structure of the whole
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process. For example, in Equation 2 the mean value of the stationary stochastic process
fX(t)g, �1 � t � 1, was defined as ensemble average. For ergodic processes this
definition is equivalent to thetime average definitionof themean

�x = lim
T!1

1

2T + 1

Z T

�T
x(t) dt (3)

Note that the statistical quantities are now subscribed by lower-case letters to denote
that they are resulted from averaging one possible value of all random variablesX(t),
�1 � t � 1, instead of averaging all possible values of one random variableX(t),
t fixed.

Time-Series Analysis

In time-series analysis we refer to astationary time seriesto be a realization of a
discrete time-history record coming from a ergodic stationary random process. That
is, one single stationary time series implies all underlying probabilistic properties of
the stochastic process it comes from.

For example, themean valueof a random process is computed as in Equation 3
defined, but in discrete form:

�x = lim
T!1

1

2T + 1

TX
t=�T

xt

In practical situations only values over a finite time interval are obtainable. Such a
limited section of a stationary time series is called asample of a stationary time series.
We use atime gateor time window, N + 1 time samples wide, to define a sample of a
stationary time series. The sequence of signal values within a time gate may be given
by

xk�(N=2); xk�(N=2)+1; : : : ; xk; : : : ; xk+(N=2)�1; xk+(N=2)

wherek denotes the center of the time gate. Themean valueover this time gate is
computed by

�̂x =
1

N + 1

k+N
2X

t=k�N
2

xt

The mean valuê� is now regarded as anestimateof the mean value of the random
process since only a finite sample of observations is used to determine this quantity.
That is, using samples of stationary time series yields to statistical errors in all statisti-
cal quantities describing the structure of the stochastic process.

Now, equivalent to thesample correlation coefficient(Equation 1) in correlation
analysis, a statistical estimator may be introduced to judge the linear relationship be-
tween the values of two traces. To do so, we first define thesample crosscorrelation
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functionfor a pair of samples of stationary time series:

R̂xy(� ) =

8>><>>:
1

N+1��

Pk+N
2
��

t=k�N
2

xtyt+� for � = 0; 1; : : : ; k + N
2

R̂xy(�� ) for � = �1;�2; : : : ;�(k + N
2
)

0 for � < �(k + N
2
) and � > k + N

2

(4)

Note that� denotes thelag numberin this definition, i.e. the number of time sample
points recordy is shifted with respect to recordx.

This estimate provides us with an estimate for thenormalized crosscorrelation
functionwhich is defined by

�̂xy(� ) =
R̂xy(� )q

R̂xx(0)R̂yy(0)
� 1 � �̂xy(� ) � +1 (5)

Thezero-lag valueof this function is equivalent to thesample correlation coefficient.
This means, a value of zero indicates no correlation between the values of two traces
and a value of one indicates a perfect linear correlation.

COHERENCY MEASURES

So far, we only have analyzed the correlation betweentwo seismic traces. To analyze
the coherent signal content within particular time gates ofmultiple channelsthere is
nothing more to do than to calculate the two-trace correlation for each combination
of the channels and to average the sum of the correlation values by the number of
combinations. The position of each time window is defined by themoveout model,
that is, we parameterize the center positions of the time windows by the time values
coming from the moveout formula of interest.

For example, we consider the case of a multichannel CMP gather. We want to
analyze this gather for coherent signals following the theoretical lag trajectory

tk(i) =

s
t2k +

x2i
v2

wheretk(i) are the calculated two-way times for discrete offsetsxi at zero-offset time
tk, wherek denotes the time sample of the center of the time gate, and velocityv.

For a time gateN + 1 time samples wide we get a set ofN + 1 symmetrically
disposed trajectories

tj(i) = tk(i) + (j � k)�t k �N=2 � j � k +N=2

wheretk is the trajectory laying along the centers of the time gates and�t is the
sampling rate.
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So defined, the zero-lag value of the crosscorrelation function (Equation 4) for two
channelsi andi0 is calculated by

Rii0 =
1

N + 1

k+N
2X

j=k�N
2

uxi;tj(i)uxi0 ;tj(i0) (6)

when we denote the signal values on the traces withu. The multichannel equivalent to
the normalized crosscorrelation function (Equation 5) is

NCC =
2

(M � 1)M

MX
i=1

X
i0>i

Rii0p
RiiRi0i0

� 1 � NCC � +1 (7)

whereM is the number of channels. This coherency measure is the(statistically)
normalized crosscorrelation measure. Its value reaches unity if the phase and shapes
of the signal within the time gates are identical. In other words, if the corresponding
signal values of different channels take a fixed linear combination over the entire time
window the linear correlation is a maximum (comp. with the two-trace correlation of
Equation 5).

Further coherency measures base on this statistical concepts, e.g.,unnormalized
crosscorrelation(Schneider and Backus, 1968) orsemblance(Taner and Koehler, 1969;
Neidell and Taner, 1971). Other coherency measures were designed in different do-
mains or with different normalization schemes and differ in their ability to record vari-
ations in the alignment of signals or their sensitivity to amplitude or sign changes
(Garotta and Michon, 1967; Taner and Koehler, 1969; Neidell and Taner, 1971; Moro-
zov and Smithson, 1996; Mauch, 1999).

Whichever measure one chose, they must always be considered in connection with
the type of data set and the traveltime model they shall applied to.

MOVEOUT MODELS

In seismic moveout models are traveltime functions. A whole of theoretical traveltime
models exists for every type of gathered data. The models differ in their theoretical
concepts and in the set of parameters used to parameterize the model.

For example, for Common Shot Point gathers (CSP) a moveout model based on the
Homeomorphic Image theory (HI) (Gelchinsky, 1989) was proposed by Keydar et al.
(1996). In their description the moveout is parameterized by theradius of curvatureof
the wave frontr0 and theangle of emergenceof the central ray�0

t(x) = t0 +
(r20 + 2r0x sin �0 + x2)1=2 � r0

v0
(8)
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where the near surface velocityv0 is mostly assumed to be known and therefore no
additional parameter. Once, a set of parameters is chosen and a zero-offset time (t0)
is fixed, the traveltimet(x) can be calculated in dependence of the receiver distance
x. The result of a coherency analysis may be a set of coherency values computed for
a range of radii, angles and zero-offset times. In the next section such a data cube is
shown for this moveout model (see Figure 3).

In general, coherency analysis aims to extract that parameter combinations for
which the chosen model fits best to the data. The parameters may then be used to
stack the data or to analyze the structure of a coherency spectrum to detect primary
and multiple reflections. In addition, if there were multiple gathers to analyze, the
parameter values itself may be plotted in a simulated zero-offset section to reveal the
structure of the subsurface.

To illustrate the application of the coherency technique two simulated shot gathers
are analyzed in the next section.

EXAMPLE OF A COHERENCY ANALYSIS

In this section I use the above mentioned traveltime model (Equation 8) to analyze two
shot gathers. The shot gathers were generated with an elastic FD algorithm — one with
a free surface producing surface multiples and one with a surface having absorbing
properties (see Figure 2). The shots were generated for the SEG/EAGE Salt Model
(Figure 1) at a distance of 5,960 meters. For coherency analysis the above derived
normalized crosscorrelation measure (Equation 7) was used. A coherency value was
calculated for every zero-offset timet0 over a range of radii from 0 to 10,000 meters
and a range of angles from -80 to 80 degree. The calculation was performed in a

Figure 1: SEG/EAGE Salt Model.

0
1000

2000
3000

4000
D

ep
th

 [m
]

0 2000 4000 6000 8000 10000 12000
Distance [m]

Earth Model - Salt Lens

parallel environment using a HPF coded program. The results can be visualized by
data cubes which are best examined in a virtual environment.
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Figure 2: Synthetic CSP-gathers: Absorbing Surface (left) and Free Surface (right).

Figure 3 shows three slices of this cube at zero-offset timet0 = 1:67 s, angle
�0 = 1:6 deg and radiusr0 = 5; 300 m. This is the parameter combination which
yielded the highest coherency value. Comparing this result with the figures of the
salt model and the seismogram it can be observed that it corresponds with the strong
primary reflection from the top of the salt lens (indicated by an arrow in Figure 2, left).

Figure 3: Result of a coherency
analysis: This section through the
coherency cube shows the focused
high coherency value of the pri-
mary reflection from the top of the
salt lens.
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Figure 4 shows a comparison of the two data cubes at zero-offset timet0 = 2:87 s,
angle�0 = 3:2 deg and radiusr0 = 5; 900m. Since the values for angle and radius are
only slightly different from the values of the primary reflection and the zero-offset time
is approximately doubled, this parameter combination corresponds with the surface
multiple of the reflection from the salt top (see arrow in Figure 2, right). As expected,
this multiple can be detected at a high coherency value in the data of the Free Surface
Seismogram (Figure 4, right) while it is not visible in the data of the Non-Free Surface
Seismogram (Figure 4, left).
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Figure 4: Comparison at the parameter combination of the multiple: Absorbing Sur-
face Data (left) and Free Surface Data (right).

This qualitative example points out only one application of coherency analysis
from a multiplicity of possible applications in seismic data processing. For further
examples see, e.g., Gelchinsky et al. (1985), Marfurt et al. (1998) or Mauch (1999).
Also, it should be noted here that in the macro-model-independent imaging process
coherency analysis plays a crucial role concerning the evaluation time and the accuracy
of the final stack (for CRS Stack see the other publications in this report).

CONCLUSION

Many coherency measures are based on the statistical concept of linear correlation.
The statistically normalized crosscorrelation measure was derived in this paper. In
seismic data processing there exists a wealth of possible applications of coherency
analysis. The performance of coherency analysis mainly depends on four factors: The
type of data to be to analyzed, the proper moveout model, the ability of the coherency
measure to reveal coherent signals and the performance of the chosen computer algo-
rithm in connection with the appropriate hardware. Since the use of coherency mea-
sures will increase it is worth to further develop these techniques.
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