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ABSTRACT

Conventional finite-difference (FD) eikonal solvers work on a cubical grid, i.e., a grid
with identical spacing along each axis. This fact renders these methods inflexible with
respect to the grid spacing of the input velocity model. In addition, a carefully chosen
set of grid spacings can reduce the model size and thus save computational time, plus it
may even allow for stronger velocity contrasts to be handled without the appearance of
acausalities. We present a fast and accurate FD eikonal solver that operates on a non-
cubical grid. Consequently, it overcomes the limitations with respect to the spacing of
the input velocity model. Also, it can use the non-cubical grid to save computational
time by reducing the number of grid points and can handle stronger velocity contrasts
in certain situations.

INTRODUCTION

Efficient calculation of first arrival travel times in gridded 3-D volumes plays an im-
portant role in various areas of applied geophysics such as tomography, earth quake lo-
cation and also prestack Kirchhoff depth migration. The class of methods most widely
known and commonly accepted because of the combination of excellent speed and
good accuracy still is the FD eikonal solvers as originally developed by Vidale (1988,
1990). This is especially true for the 3-D case considered here because of the sheer
amount of computations that must be carried out to fill a 3-D volume with travel times
at each sampling point.

As already mentioned, conventional 3-D FD eikonal solvers operate on cubical
grids, i.e., rectangular grids, where the grid spacing is the same for each coordinate
axis.

The use of a cubical grid implies unwanted restrictions of the sampling of the input
velocity model. Often, the original model data is not equally spaced and thus has to
be resampled. But non-cubical grids offer other advantages, too. Depending on the
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Figure 1: Minimum critical angles for cubical (left) and non-cubical (right) grids.

variation of the model one can resample it, making the grid as fine as necessary but as
coarse as possible to the model correctly on the one hand and minimize computational
time on the other.

Finally, by stretching the grid in the appropriate direction one can extend the max-
imum velocity contrast that can be treated without acausalities for this direction. This
is due to the fact that the minimum critical angle of incidence depends on the geometry
of the grid cell. For a cubical cell one gets (compare figure 1, left):

tan'1 =

s
2

3
or '1 � 39:23�; (1)

whereas when e.g.hy = hx and hz = 2hx the minimum critical angle becomes
(compare figure 1, right):

tan'2 =

s
2

6
or '1 = 30�: (2)

That means that in the first case a velocity contrast from, e. g., 2000 m/s to 2449 m/s
can be handled whereas this rises to 2000 m/s to 3464 m/s for the second case. When
hy = hx andhz = 4hx it even becomes 2000 m/s to 6000 m/s.

In this paper, we present a new implementation that allows for the use of non-
cubical grids, i.e., grids that can have different grid spacings along different axes. This
makes it possible to use all itemized advantages of non-cubical grids. The application
to two analytically solvable models demonstrates speed and accuracy of the algorithm.

METHODOLOGY

The formulae for the non-cubical scheme are not directly derived from the eikonal
equation by replacing the partial derivatives with finite difference expressions. They
are rather constructed by finding appropriate values for weightsw0 tow6 in a general
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formula by introducing certain constraints. As an example, the general formula for the
by far most frequent situation, where seven time samplest0 to t6 at the corners of a grid
box are known and the eightht7 has to be computed (for the geometry see figure 2):

t7 = t0 +

 
w0 � w1

(t1 � t2)2 + (t5 � t6)2

2
(3)

�w2
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2
� w3
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2

�w4
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2
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2

! 1
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To obtain correct and stable results also for fairly large differences between the grid
spacings, we switch from a model representation that uses different grid spacingshx,
hy andhz and an isotropic velocityv, to a formulation with a set of anisotropic veloc-
ities vx, vy andvz and a unique grid spacingh. With these velocities as given below
we use phase velocity rather than group velocity to compute travel times which makes
sure that travel times are computed in a correct way. The anisotropic velocities along
the axes are:

vx = v
hx
h
; vy = v hy

h
; vz = v

hz
h
: (4)

Accordingly, diagonal and big diagonal velocities read:

vxy =

s
v2x + v2y

2
(5)

vyz =

s
v2x + v2z

2

vyz =

s
v2y + v2z

2

vxyz =

s
v2x + v2y + v2z

3
:

With this formulation of the non-cubical grid as anisotropic velocities one can find the
following weights for the above travel time formula:

w0 =
3h2

vxyz
(6)

w1 = w2 = w3 = 1

w4 =
6h2 + (�2v2xy � 2v2yz + v2y + v2z)w0

4h2
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Figure 2: Cell of the scheme of computation.

w5 =
6h2 + (v2x � 2v2xy � 2v2yz + v2z)w0

4h2

w6 =
6h2 + (v2x � 2v2xz + v2y � 2v2yz)w0

4h2

The algorithm itself remains almost unchanged from the original by Vidale (1990):
After an initialization around the source, the scheme of computation proceeds at the
surface of an expanding box. First sides and then edges are computed subsequently
and independently for each surface, until the whole volume is filled with travel times.

APPLICATION

We apply our non-cubical FD eikonal solver to two 3-D models with identical dimen-
sions but different velocity distributions, a constant gradient and a two layers case.

The models are box-shaped with edge lengthsx = 500 m, y = 3000 m and
z = 2000 m in the respective directions. The corresponding grid spacings arehx = 10 m,
hy = 20 m andhz = 40 m giving a total number of 51� 151� 51= 392751 samples.

The computational time necessary for computing first arrival travel times for each
of the 392751 subsurface points is for both models about 1.75 s. This time was mea-
sured with the utilitygprof on a Sun Workstation with an Ultra2 processor running at
250 MHz. The code was compiled with maximum optimization and ran on one single
processor. The required time is about 80 % longer than for the same number of grid
points and a cubical-grid. However, with an equal grid spacing of 10 m in each direc-
tion, the number of grid points would be about ten fold of the current number resulting
in a computational time five times the one for the non-cubical grid.

The given errors are absolute values of relative errors between the numerically
computed and the analytically for the gradient model or semi-analytically for the two
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layers model travel times.

Constant Gradient Model

The gradient model's top velocity isvt = 2000 m/s, the gradient isg = 1.5 1/s yielding
a bottom velocityvb = 5000 m/s.

The time slices in figure 5 for the gradient model show a very good fit between
numerically computed and true travel times. This is also reflected by the small average
relative errorerrav = 0.0024 %. The maximum relative errorerrmax = 2.22 % appears
in the top left backpart of the model due to small angles of incidence of the expanding
wavefront relative to the model grid. These small angles can numerically not be treated
very well with the FD formulae.

Two Layers Model

The upper layer velocity of the two layer model isvu = 4000 m/s, the lower layer
velocityvl = 7000 m/s.

Figure 6 shows that also for the two layer model accuracy of the method is ex-
cellent. The average relative error is witherrav = 0.0004 % even half an order of
magnitude smaller than for the gradient model. Again the maximum relative error
errmax = 2.20 % appears in the top left backpart of the model for the reasons given
above. The interface region between the two layers as well as the head wave, however,
show no significant error, but are treated correctly.

CONCLUSIONS AND OUTLOOK

We presented an efficient, i.e., fast and accurate, FD eikonal solver that does not op-
erate on the usual cubical but on a non-cubical grid. This allows for higher flexibility
with regard to the sampling of the input model and, more important, can save substan-
tial amounts of core memory because the model sampling can be adapted to the model
structure in such a way that least resources are used. Another advantage can be the
ability to handle stronger velocity contrasts without the occurrence of acausalities as
was shown in the second numerical example.

The non-cubical method is currently slower than the cubical-one. However, we
hope to be able to diminish the difference by better scooping the optimization potential
of the non-cubical method.
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Figure3: Constantvelocitygradient:Darkercolordenoteshighervelocity.
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Figure 4: Two layer model: Darker color denotes higher velocity.
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Figure 5: Constant velocity gradient: Thin lines denote numerically computed travel
times, thick grey lines analytic ones.
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Figure 6: Two layer model: Thin lines denote numerically computed travel times, thick
grey lines analytic ones.


