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ABSTRACT

A recursivecell wavefront tracing algorithmprovidesuswith amethod for generating
interpretable wave phases in 3D earth models. We developed the algorithm further,
such that it is capable of incorporating source radiation and receiver radiation pat-
terns, which are important ingredients for elastic modeling and imaging. Applications
of this algorithm include the computation of Green's Function and subsequent gen-
eration of synthetic prestack data sets. A parallel MPI based implementation is in
progress.

INT RODUCTION

The recursive cell wave front tracing algorithm, as described by Moser Moser and
Pachel (1997), provides us with a method for generating interpretablewave phases in
3D earth models. Using travel times and amplitudes in a smooth background model,
we are able to use this information for purposes of imaging as well as modeling. We
areableto computeGreensfunctionsin complex subsurfacemodels. Wedeveloped the
method further, such that it is capable of incorporating source radiation and receiver
radiation patterns, which are important ingredients for elastic modeling and imaging.
Using theSEG/EAGE salt model wegenerateprimary p-waveGreen's functionsfrom
various target areas. Using the computed travel time amplitude and phase informa-
tion, we synthesize entire prestack data sets. Thus we areable to to compare prestack
data sets that were modelled using full wave form techniques. Due to the potentially
heavy computational load the methods is well suited to analyses target oriented pri-
mary events. Such scenarios represent ideal test cases for multiple suppression tech-
niques and target-oriented imaging comparisons.

1email: martin.karrenbach@physik.uni-karlsruhe.de

283



284

APPLICATION TO THE SEG/EAGE SALT MODEL

We demonstrate the ability to compute complex subsurface responses by applying it
wave front tracking method to the SEG/EAGE salt model. This model had been use
previously (Karrenbach, 1998) to compute full wave form responses acoustically and
elastically using a Finite Difference method. The complexity of the seismic response in
this still simple model is not easily analyzed. Using this wave front tracking method we
can compute targeted responses that are ray-theoretically correct. Figure 1 shows the
2D slice that has been used to compute various responses. In this example we consider
p wave types only. Figure 2 shows the resulting zero offset section, which contains
only the p wave responses from the top of the salt. This section has been generated by
computing the Green's Function with source points at discrete grid locations at the top
of the salt and receiver locations at the top surface of the model.

Figure 1: Salt model 2D slice.
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Figure 2: Zero offset section containing p wave events originating from top of the salt
only.

Using the already computed Green's function information, we can generate an en-
tire prestack data set. Figures 3 and 4 show the prestack data set at various time slices.
The source location spacing was at a regular 40 meter interval. In contrast to the full
wave form response we obtain a much simpler response that shows the events of waves,
that emanated from the top of the salt and propagated in the complex overburden up to
the receivers. As starting angles only a cone of width +/- 90 degree from the vertical
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was allowed. Still many of the events are generated by multi-pathing rays, that get
refracted at the corners of the salt and at the upper interfaces.

Figure 3: Shotpoints are located
every 40 meters. We obtain a
prestack data set. The times lice is
placed at 1.776 seconds.
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Figure 4: Shotpoints are located
every 40 meters. We obtain a
prestack data set. The times lice is
placed at 2.472 seconds.
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In contrast to the partial wave field response in the previous figures, Figure 5 shows
the p-wave response obtained by including all subsurface scatterers. Reaching already
a complexity similar to the one obtained by full wave field modeling techniques.

Figure 5: Snapshot from seismo-
gram with shot point at 8 km off-
set at 2.59 seconds (filtered with a
bandpass filter 10 -80 Hz).
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The previous comparison all showed the application of the standard scalar wave
front tracing scheme. If we would like to compute a elastic response of the subsurface,
that is recorded at multi component receivers at the surface we need to augment the
algorithm to keep proper track of particle motions along a wave front path.

In the next section we briefly outline our scheme to propagate polarization vectors
through the medium using the recursive cell ray tracing.

SHEAR WAVE PARTICLE MOTIONS

The generic recursive cell ray tracing algorithm is based on Moser's method?), which
solves the ray equations in the following form

T =
dx

dt
= u(x)�2p (1)

dp

dt
= u(x)�15 u(x) (2)

whereu(x) is the slowness atx, u = 1
c
, p= the slowness vector,5u(x) is the gradi-

ent of the slowness atx andT is the tangent vector to the ray. This system of equations
is solved numerically by means of a Runge-Kutta scheme. Cartesian coordinates are
used throughout this formulation. In its original implementation calculations for the
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displacement vector are neglected since only single p-wave type were considered. The
p-wave polarization can be deduced directly from computed quantities, because its
displacement vector is tangent to the ray. In order to develop an algorithm which is
suitable for computing s-waves and their displacement vector Moser's algorithm needs
to be modified to use a source radiation pattern. The initial polarization vectorej at the
source defines a characteristic source strength for this radiation angle.
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Figure 6: A ray and its unit vectors/polarization vectors, after Popov and Psencik
(1976)

The displacement vectors are described by two perpendicular unit vectorsej , with
ranging fromj = 1; 2:

dej
ds

= �jT (3)

�j =
1

c

@c

@qj
jqj=0 (4)

wherec is velocity, andT is the tangent vector andqj are the ray centered coordinates
in theT;e1;e2system.ej andT are in unit length. We can solve this integral by a finite
difference approximation

ej(0 +4s) = �jT(0)4 s+ ej(0) (5)

whereq =ray centered coordinates and4s = step size for the calculations along the
ray.

We use Fermat's integral in the following form

F =
Z p

x02 + y02 + z02

c(x; y; z)
d�; (6)

where c is the velocity and
p
x02 + y02 + z02d� = ds is the arc length along a ray

r= r(s) = (x(s)i+ y(s)j+ z(s)k).
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Subsequently its Euler's equation take the form

d

ds
(
1

c

dr

ds
)�51

c
= 0: (7)

Taking the time t as a parameter along the ray instead of s then and using a slowness
vector equation 7 takes on the form of a system of two equations

) dr

dt
= c2p= u�2p (8)

dp

dt
= u�15 u: (9)

This system is solved numerically and for a practical implementation we consider
the computation of the polarization vector in Cartesian coordinates. In the following
(; ) denote inner products. From Fermat's integral

f(x; y; z) = f(x(s); y(s); z(s)) = F (s) (10)

dF

ds
=

@f

@x

dx

ds
+
@f

@y

dy

ds
+
@f

@z

dz

ds
= (5f;T) (11)

we obtain a different formulation for equation 4

�j = �1

u
(5u;ej); j = 1; 2 (12)

where(5u;ej) denotes a inner product between the gradient of the slowness and the
jth polarization vector.

Finally, approximating
dej
dt

=
1

u
�jT (13)

by a finite difference quotient

dej
dt

=
ej+1 � ej
4t

=
1

u
�jT (14)

we obtain the discretized equation

ej+1 = �jTdt+ ej (15)

wheredt =step is the step size for the numerical calculation.

Thus we can calculate the vectorsej+1 andT at the point given after a certain time
incrementdt from the source. Equation 15 is then solved for all 3 components. In
fact we perform the computation by a Runge-Kutta scheme. In isotropic media we
only need to track to independent polarization vectors namelye1 andT. The second
polarization vectore2 is obtained by computing the cross producte2 = e1xT.
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SOURCE AND RECEIVER CHARACTERISTICS

When modeling multi component seismic data one needs to pay particular attention to
the source and receiver characteristics. Multi component sources can display compli-
cated radiation patterns. A seismogram is then given by the combination the source
and receiver radiation patterns as well as the propagation effects through the medium.

We augmented the original method to handle exactly this kind of additional com-
plexity. These patterns describe the distribution of the amplitudes on a spherical wave
front. We are able to apply any desired source radiation pattern. Typically we use
the analytically given radiation field of a p, shear, dipole or double couple source as
illustrated in Figure 7 and 8.
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Figure 7: Horizontal (x) component for P-wave energy due to a) explosion source b)
double couple source.

CONCLUSION

We used Moser's original recursive cell ray tracing algorithm and augmented the
method to include source and receiver characteristics as well as the tracking of po-
larization vectors through a medium. We show some application of this wave front
tracking scheme by using the SEG/EAGE salt model, where we calculated partial and
full single wave type responses. Green's Functions as well as synthetic prestack data
are computed. The method is attractive since it uses a relatively low amount of mem-
ory and exhibits a natural amount or computational parallelism. Currently a Message
Passing Implementation is being investigated.
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Figure 8: The horizontal (x) com-
ponent of the radiation pattern of
the S-wave source.
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