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ABSTRACT

In this part we apply the CRS stack to a synthetic dataset. We show that the CRS
stack not only improves the resulting simulated zero-offset(ZO) section but also pro-
vides important wavefield attributes, which can be used to derive a macro-velocity
model. We compare the data-derived attributes determined by the CRS stack with
the model-derived (forward calculated) attributes and thus confirm the correctness of
these parameters.
The CRS stacking surface depends on three parameters, which are the emergence an-
gle � of the ZO ray, as well as two wavefront curvaturesRN andRNIP associated
with the ZO ray, namely the normal wave and the normal-incidence-point (NIP) wave.
We also address the problem of determining an optimal parameter triple for each ZO
sample to be simulated. This triple is expected to fit a CRS traveltime surface best to
the reflection events. To make the CRS stack more attractive regarding computational
costs much effort has to be put on a strategy to find these optimal parameter triples for
all ZO samples. This leads us to the concept of global optimization.
For the implementation of the CRS procedure we make use of the hyperbolic second
order Taylor expansion of the CRS stacking surface since this representation is more
suitable to handle irregular acquisition geometries. In addition, the hyperbolic trav-
eltime expansion formula can be simplified in specific gathers and thereby enables
different search strategies.

INTRODUCTION

Although we have already successfully applied the CRS stack to real datasets we de-
cided to show here an application of the CRS stack to a synthetic dataset only. The
reason for this is that we want to compare the data-derived attributes,�,RNIP andRN ,
determined by the CRS stack, with the model-derived (forward calculated) attributes
of the used synthetic model. For real datasets we could show you the experimental
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attribute sections but we would not be able to convince you of the correctness and ex-
cellent quality of these attribute sections as this can only be done by a comparison with
model-derived attributes.

For the implementation of the CRS stack we make use of the hyperbolic second
order Taylor expansion of the CRS stacking surface. This is due to the fact that in real
datasets the seismic traces are usually not located on a regular grid. Therefore, the
parametric CRS traveltime formula given in part I would require trace interpolation.
On the contrary, using the hyperbolic traveltime approximation saves computational
time, since no trace interpolation is needed at all.

MODEL

To test the CRS stack we created a synthetic common-offset data set for the inhomo-
geneous model shown in fig. 1 consisting of five dome-like interfaces. We simulated
multi-coverage primary reflection data from all interfaces using the ray method for
half-offsetsh = 0 m to h = 1250 m in increments of�h = 25 m and at midpoint
intervals of�xm = 25 m in the range�1000 m � xm � 11000 m. As seismic sig-
nal we used a Ricker wavelet of30 Hz peak-frequency and a sampling interval of 4
ms. Finally, random noise was added to the synthetic reflection data. It is important
to remark that, for the above synthetic noisy data example, we chose the signal(peak
amplitude)/noise(variance) ratio of 4. This implies that reflection events of deeper
interfaces can hardly be visually identified in neither the CO sections nor the CMP
gathers. A subset of the synthetic ZO section is shown in fig. 2.

R

Figure 1: Model consisting of five dome-like interfaces.
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Figure 2: ZO section of synthetic dataset.

GLOBAL OPTIMIZATION

As shown in Part I the hyperbolic traveltime approximation of the CRS surface in
midpointxm and half-offseth coordinates is given by

t2 (xm) =
�
t0 +

2 sin �

v0
(xm � x0)

�2
+

2 t0 cos2 �

v0

 
(xm � x0)

2

RN
+

h2

RNIP

!
: (1)

Another approach to obtain this equation can be found in Schleicher et al. (1993).
There, it is derived by means of the paraxial ray theory. For each pointP0 = (x0; t0)
in the ZO section we have to determine the optimum parameter triple�, RNIP , RN ,
i.e., the triple for which the above traveltime surface fits best to the reflection events.
One possible approach to find these parameters would be to test all parameter triples
and select the triple which leads to the highest coherency value. Of course this infinity
number of test triples must be restricted to a finite three dimensional grid. However,
from a practical point of view this would still be computationally much too expensive.
Therefore, we have to look for a more efficient method to find the optimum parameter
triple.

The problem states as follows:
Find the absolute maximum of the coherency value which is a function of the three
independent variables�, RNIP andRN in a minimum computation time.
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This is a typical problem of global optimization and quite a lot of algorithms exist
to handle such a problem. But finding the global extremum is, in general, a very diffi-
cult problem and the success of all these optimization algorithms strongly depends on
the behaviour of the considered function. To give you a better idea of the problem we
have calculated the coherency values along the traveltime surfaces defined by eq. (1)
for a cube of parameter triples(�;RNIP ; RN) for subsurface pointR = (x=6300m,
z=-1850m) located on the4th layer of the synthetic model shown in fig. 1. The cube of
coherency values for pointR is shown in fig. 3. We have excavated a brick in this cube
to allow you to view the point where the coherency function has its maximum. The
point of maximum coherency is located at� = 8:9�,RN = 4043m andRNIP = 2161
m. In fig. 4 we show cross-sections of the cube in fig. 3, orthogonal to the coordinate

Figure 3: Cube of coherency values. The maximum coherency value is located at
� = 8:9�, RN = 4043 m andRNIP = 2161 m.

axes through the point of maximum coherency.

What we need is a multidimensional maximization algorithm which is capable to
find the global maximum of the coherency function in such a cube. In multidimen-
sional maximization algorithms, the best one can do is to give the algorithm a starting
guess, that is, in this particular case, a specific parameter triple as a first point to try.
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b) c)a)

Figure 4: Sectional planes through the maximum coherency value of the coherency-
cube: a)RN -RNIP section for� = 8:9�, b)�-RN section forRNIP = 2161 m and c)
�-RNIP section forRN = 4043 m.

The algorithm is then supposed to make its own way until it encounters a maximum.
The main problem with all efficient multidimensional maximization algorithms is that
one can never be sure that the found maximum is the global maximum rather than a
local one. The probability to determine the global maximum is the higher the less local
extrema exist and the smoother the functional behaviour is.

At a first glance, the coherency function seems to possess a quite good behaviour
with respect to the optimization algorithms, i.e., the function looks smooth and has a
broad, distinct maximum. Especially, if we look at the (�, RN ) section in fig. 4b) one
gets the impression that it should not be too difficult for an optimization algorithm to
find the global maximum.

However, clipping coherency values exceeding 30 % of the maximum coherency
value reveals that a lot of local extrema are present in this cube. Each of these local
extrema serves as a potential trap for any optimization algorithm. The clipped version
of the coherency cube is shown in fig. 5, the clipped slices are shown in fig. 6.

From these figures we see that, in general, an optimization will only be successful
if we start with a parameter triple that is sufficiently close to the optimal parameter
triple. Otherwise the optimization algorithm will probably run into a local maximum.
This will become even clearer if you have a look at fig. 7: there we show cross sections
orthogonal to the coordinate axes that do not intersect the point of maximum coherency
but are shifted slightly along the coordinate axes. In this off-maximum sections things
become even worse.

We can conclude that to use any optimization algorithm we need to determine an
initial triple (�0; R0

NIP ; R
0
N ) as starting point for the optimization.
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Figure 5: Same cube as in fig. 3 clipped to reveal local maxima.

a) b) c)

Figure 6: Sectional planes through the maximum coherency value of the cube in fig. 5:
a) RN -RNIP section for� = 8:9�, b) �-RN section forRNIP = 2161 m and c)�-
RNIP section forRN = 4043 m.
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b) c)a)

Figure 7: Slices through the cube in fig. 5 that do not intersect the point of maximum
but are slightly shifted along the coordinate axes: a)RN -RNIP section for� = 14:9�,
b) �-RN section forRNIP = 2637 m and c)�-RNIP section forRN = 1022 m.

STRATEGIES

In this section we introduce two methods to determine initial attributes�0, R0
NIP , and

R0
N suitable as starting points for the optimization algorithm.

One can easily verify that eq. (1) simplifies in the CMP gather forx0 and in the ZO
section. In the CMP gather (xm = x0) it reduces to

t2 (xm) = t20 +
2 t0 cos2 �

v0

h2

RNIP

; (2)

and in the ZO section (h = 0) we get

t2 (xm) =
�
t0 +

2 sin �

v0
(xm � x0)

�2
+

2 t0 cos2 �

v0

(xm � x0)
2

RN
: (3)

This allows us to split the CRS stack into several steps. In this way we can quickly
find a reasonable parameter triple as starting point for the optimization algorithm.

Method A

Step I : CMP Stack

The first step common to both search strategies described below is to use eq. (2) in the
CMP gathers. There the traveltime curves only depend on the combined parameter

q =
cos2 �

RNIP
: (4)
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Hence, for each pointP0 in the ZO section to be simulated we have to perform a one-
parametric search for the combined parameterq in the CMP gather, i.e., for each point
P0 we have to calculate the coherency value along the traveltime curves given by eq. (2)
for a whole range ofq values and select the one which provides the highest coherency
value. For each pointP0 we subsequently perform a stack along the traveltime curve
by means of the respectiveq parameter. In the following we refer to this first step as the
CMP stack as we only use traveltime curves which are defined in the CMP gathers. As
a result from the CMP stack we get three sections, namely: a) simulated ZO section,
b) coherency section and c)q-parameter section.

Step II : ZO Stack

In the second step we use the simulated ZO section of the CMP stack together with
eq. (3). In the ZO section the traveltime curves only depend on� andRN . Thus, for
each point (x0; t0) we have to find optimal parameters� andRN in the ZO section.
This can be done in two ways.

We can perform a two-dimensional search for the parameters by calculating the
coherency values along the traveltime curve given by eq. (3) on a two-dimensional
grid of parameter pairs (�;RN ). Thereafter we select the parameter pair which yields
the highest coherency value.

Alternatively, we can perform two one-dimensional searches by first settingRN =
1 in eq. (3) and determining� in

t (xm) = t0 +
2 sin �

v0
(xm � x0) : (5)

Having found� we can substitute it into eq. (3) and perform a second one-dimensional
search forRN .

With the knowledge of attribute� we can then invert the parameterq gained by
the CMP stack in step I in order to determineRNIP . For each pointP0 we can subse-
quently perform a stack along the ZO traveltime curve for the found attributes� and
RN in the same way as for the CMP stack. But in contrary to the CMP stack the simu-
lated ZO stack of step II is not really needed but can be considered as a quality check.
In the following we refer to this second step as ZO stack because we use traveltime
curves defined in the ZO gather. As another intermediate result from the ZO stack
we obtain five sections, namely: a) simulated ZO section, b) coherency section, c)�-
section, d)RNIP -section and e)RN -section.
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Step III : CRS Stack

In the final step we make use of the traveltime surface given by eq. (1) and apply it
to the original dataset using the attributes found in step II as starting points for the
optimization algorithm.

In the following we refer to this third step as CRS stack since we make use of the
entire CRS stacking surface in the (x-h-t) space. As results from the CRS stack we
obtain five sections: a) final simulated ZO section, b) coherency section, c) optimized
�-section, d) optimizedRNIP -section and e) optimizedRN -section.

Comments on method A

Please note that the motivation of step I (CMP stack) and step II (ZO stack) is solely
to provide suitable initial parameter triples for the optimization algorithm in step III
(CRS stack). Yet, to exploit the full advantage of the CRS stack we have to use not
only traveltime curves confined to the CMP gather and the ZO section but traveltime
surfaces in the (x-h-t) space. The whole sequence of steps is visualized in fig. 8 as
flowchart.

However, the search-strategy presented above has a disadvantage: in the second
step we do not use the original dataset but the simulated ZO section of the CMP stack
as input. The CMP stack is, of course, far from being optimal and using this stack as
the input section for the next step may be dangerous as errors made in the first step
may accumulate in the following steps. At least, by using the simulated ZO section in
step II instead of the original dataset, we do not make use of all the information given
by a multi-coverage reflection dataset. Nevertheless, with a minor modification in step
II, presented above, we can easily overcome this drawback:

Method B

Step I : CMP Stack

This step is the same as in method A described above. For the sake of clearness and
to make the next step more comprehensible we briefly explain the connection of the
q-parameter found for a specific pointP0 and the coherency cube for this point. For
every pointP0 in the ZO section to be simulated, we could calculate a coherency-cube
similar to the one depicted in fig. 3. With the knowledge ofq,RNIP is given by

RNIP =
cos2 �

q
: (6)
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Figure 8: Flowchart for method A.
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As this equation holds for allRN , the q-parameter found in the CMP stack defines
a surface in the cube of coherency values. Theq-surface for pointR is displayed in
fig. 9. In case pointP0 is located on a ZO reflection event a clear distinct maximum
will be present. If we assume theq-parameter to be optimal, the surface will obviously
pass through the maximum coherency value of the cube.

Figure 9: Surface in the coherency-cube defined by theq-parameter.

Step II : Restricted CRS Stack

In the second step of method A we needed theq-attribute section only to invert for
the last parameterRNIP after having found� andRN . During the search neither the
determinedq-parameter norRNIP are involved because the ZO traveltime curve does
not depend onq orRNIP .

However, to search� andRN in the original dataset and not confine the search to
the simulated ZO section of step I we can use eq. (1) even if this equation depends
uponRNIP . This is possible as for every parameter pair (�;RN ) RNIP is determined
by theq-surface in the (�;RN ,RNIP ) search space. Thus, for every parameter pair
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(�;RN ) we determineRNIP by means of eq. (6) and calculate the coherency value for
the resulting parameter triple along the traveltime surface given by eq. (1). Note that
although we use all three parameters�, RNIP andRN in eq. (1) for the calculation of
the coherency value, we still perform a two-dimensional search only, becauseRNIP

is related to� by theq-attribute already determined. Again, we have two possibilities
to find� andRN : on the one hand, we can make a two-dimensional search for� and
RN on a grid as described in method A but using eq. (1) instead of eq. (3). On the
other hand, we can perform two separate one-dimensional searches by firstly setting
RN =1 in eq. (1) and looking for� in

t2 (xm) =
�
t0 +

2 sin �

v0
(xm � x0)

�2
+

2 t0 cos2 �

v0

h2

RNIP
: (7)

Having found� we can substitute it into eq. (1) and perform a second one-parametric
search forRN .

In the following we will refer to this process as the “restricted CRS stack” because,
firstly, we use the full CRS traveltime surface in the (x-h-t) space, and secondly, we
test only for parameter triples restricted to theq-surface in the (�;RN ; RNIP ) search
space.

Step III : CRS Stack

This step is the same as in method A described above. The attribute sections of step II
are used as initial points for the optimization algorithm.

Comments on method B

The motivation of step I (CMP stack) and step II (restricted CRS stack) is to provide
suitable initial parameter triples for the optimization algorithm in step III (CRS stack).
This method has the advantage that all search procedures are carried out directly in the
original dataset. No simulated ZO section is needed as input for step II anymore. This
is achieved by already making use of theq-parameter during the search for� andRN ,
whereas in method Aq is only used to invert forRNIP after� andRN are determined.
The disadvantage of this method is that step II is computationally more expensive than
in the first method: for every parameter pair (�;RN ) we have to calculate the coherency
value along a surface in the (x-h-t) space, whereas in the first method we determined
the coherency value along traveltime curves in the ZO section only.

The whole sequence of method B is visualized in fig. 10 as flowchart.
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RESULTS

To demonstrate the power of the CRS stack we apply method B to the synthetic dataset
described in section . As coherency criterion in all steps we use semblance (Taner and
Koehler (1969)).

As results of step I we get the simulated ZO section shown in fig. 11 together
with the semblance section shown in fig. 12. The correspondingq-section is shown in
fig. 13.

From step II we obtain initial attribute sections�0, R0
N , andR0

NIP . As these sec-
tions are intermediate results we do not show them here. We determined these results
by a two-parametric search for� andRN on theq-surface as described in section .

In step III we use the initial attribute sections of step II as initial points for the op-
timization algorithm. We use the so-called downhill simplex method in multi dimen-
sions (Press et al. (1986)) to optimize the attributes. The CRS stack and the semblance
section are shown in figs. 14 and 15. Compared to the CMP stack the CRS stack
reveals a much better signal/noise ratio, since the CRS stack uses stacking surfaces,
whereas the CMP stack only involves stacking curves. Therefore, more traces are used
to simulate a point in the ZO section and thus noise is suppressed more successfully.

Figure 16 shows the optimized�-section in a gray-scale representation. In order to
compare the data-derived attributes with the model-derived attributes we switch to the
3D representation shown in fig. 17. There, we only show the�-attribute for the points
in the ZO section that correspond to reflection events. Each point in the ZO section
is represented by a point in three dimensions, where the third dimension corresponds
to the attribute's value. The data-derived�-attributes are shown as thin black lines,
the model-derived attributes as gray points. To further facilitate a comparison between
data-derived and model-derived attributes we perform a projection along the time axis
onto the (midpoint,�) plane shown in fig. 18. Again, the data-derived attributes are
represented by black lines, whereas the model-derived attributes are depicted in gray.

There is no need to emphasize the good accordance of the data-derived with the
forward-calculated attributes.

The optimizedRNIP -section is shown in fig. 19. For comparison to the model-
derivedRNIP -attributes we refer to fig. 20. The optimizedRN -section is depicted in
fig. 21. For clearness the model-derivedRN -attributes are compared separately for
each interface in fig. 22.



39

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e 
[s

]

0 2 4 6 8 10
Distance [km]

Figure 11: CMP Stack
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Figure 12: Semblance section for the CMP stack.
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Figure 13: Combinedq-parameter of CMP stack [1/m].
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Figure 14: CRS Stack
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Figure 15: Semblance section for the CRS stack.
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Figure 17: 3D view of data-derived (thin black lines) and model-derived (gray points)
�-attributes.
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Figure 18: Comparison of data-derived (black) and model-derived (gray)�-attributes
for all interfaces.
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Figure 19: OptimizedRNIP -attribute [m].
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Figure 20: Comparison of data-derived (black) and model-derived (gray)RNIP -
attributes for all interfaces.
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Figure 21: OptimizedRN -attribute [m].
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a)

b)

c)

e)

d)

Figure 22: Comparison of data-derived (black) and model-derived (gray)RN -
attributes. The attributes for each layer are plotted separately: a) first, b) second,
c) third, d) forth and e) fifth layer.
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CONCLUSIONS

A macro velocity independent ZO simulation, which only requires the knowledge of
the near surface velocity, has been proposed and applied to a synthetic dataset. Its
results are beneath the stack section various attribute sections and a coherency section
that can be used for a subsequent inversion.

For the determination of the required attributes different search strategies have been
introduced. These strategies permit to save computation time and the use of a global
optimization algorithm.

The application to a synthetic dataset showed noteworthy results with respect to
the stack section and the determined attributes. In view of the authors, the proposed
strategies offer an exciting approach to improve the stack section and to allow for a
subsequent inversion.

The fact that the hyperbolic traveltime approximation (Schleicher et al. (1993))
of the CRS stacking surface can be simplified in specific gathers offers a strategy to
quickly determine initial attributes for an optimization algorithm.

REFERENCES

Press, W. H., Teokolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1986, Numerical
recipes in fortran: The art of scientific computing.: Cambridge University Press,
Cambridge.

Schleicher, J., Tygel, M., and Hubral, P., 1993, Parabolic and hyperbolic paraxial two-
point traveltimes in 3D media: Geophys. Prosp.,41, no. 4, 495–514.

Taner, M. T., and Koehler, F., 1969, Velocity spectra – digital computer derivation and
applications of velocity functions *: Geophysics,34, no. 6, 859–881.


