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ABSTRACT

The simulation of a zero-offset (ZO) section from multi-coverage reflection data for
2-D media is a widely used seismic reflection imaging method that reduces the amount
of data and enhances the signal-to-noise ratio. The aim of the CRS stack method is
not only to improve the resulting stack section but also to determine parameters that
are useful with respect to a subsequent inversion. The main advantage of the common
reflection surface (CRS) stack is the use of analytical formulae that describe the kine-
matic reflection response of inhomogeneous media with curved interfaces but do not
depend on a macro velocity model.
For the travel time estimation the CRS stack uses circular wavefronts that are asso-
ciated with the local dips and radii of curvatures of the reflectors. The result of this
approach yields a stacking surface in the data set for each point in the simulated ZO
section. These concepts are based on ideas of de Bazelaire (1986), de Bazelaire and
Thore (1987), Gelchinsky (1988), Keydar et al. (1990) and Berkovitch et al. (1994).
However, we give no review of their methods but use a different approach for the
derivation of the formulae involved in the CRS stack.
For constant velocity media we derive exact formulae for the CRS stack. In order to ex-
tend these formulae to inhomogeneous media we use attributes of hypothetical waves
that would be observed at the surface (Hubral (1983)). The resulting formulae depend
on these a priori unknown attributes, which can be determined by a search procedure
involving coherency analysis (Taner and Koehler (1969)).
Besides the stack section, one obtains a coherency section and various attribute sec-
tions. The coherency section is helpful to identify the locations of reflection events.
There, one can subsequently use the attributes to derive the a priori unknown macro
velocity model (Hubral and Krey (1980), Goldin (1986)).
Taylor series expansions of the CRS surface provide explicit formulae. Additionally,
these formulae allow to split the search procedure into separate steps in order to re-
duce the computational costs: e. g., the search of the required attributes can be first
performed in the CMP gathers and afterwards in the resulting CMP stack section, a
concept introduced by de Bazelaire and Thore (1987).

1email: ghoecht@gpiwap4.physik.uni-karlsruhe.de
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INTRODUCTION

Seismic reflection imaging is the objective of a multitude of methods with a wealth of
illustrations in order to “illuminate” the data. In this context, a “unified approach”
is described by Hubral et al. (1996a) and Tygel et al. (1996). An important seis-
mic reflection imaging process that is widely applied in practice is the simulation of
a ZO section from a set of common-offset (CO) sections. To this category of seis-
mic imaging one counts standard seismic reflection methods such as the well-known
common-midpoint (CMP) stack and the normal moveout/dip moveout (NMO/DMO)
stack (Black et al. (1995), H¨ocht et al. (1997)), which is also called migration to zero-
offset (MZO) (Hubral et al. (1996b)). The resulting stack section can subsequently
be post-stack depth migrated to obtain an image of the subsurface. Another seismic
reflection imaging method is the pre-stack depth migration (PSDM) that directly pro-
vides an image of the subsurface. However, these methods are either model dependent
or based on assumptions that are not appropriate for complex media. Even for the
constant velocity case, processes as the NMO/DMO stack and the PSDM cannot pro-
vide the best reflector illumination as discussed by Hubral et al. (1998). In contrast,
approaches formulated by de Bazelaire and Thore (1987), de Bazelaire and Viallix
(1994) or Berkovitch et al. (1994) are designed to handle complex media and addition-
ally consider the reflectors' curvatures. Based on their ideas, we describe the kinematic
reflection response of inhomogeneous media with curved interfaces through analytic
formulae. These formulae are derived from a kinematic point of view meaning that
neither the amplitudes nor possible phase shifts are considered.

In the following we assume that different CO sections have been acquired for the
same seismic line. Each trace in a CO section shows the measured reflection events,
which are provided by an experiment with a single shot/receiver pair, with respect to
time t. A CO section is defined by the constant offset of a source/receiver pair. Thus,
one can imagine a source/receiver pair to be shifted on the seismic line to provide
different traces and thereby an entire CO section. We assume that each trace is plotted
at the midpointxm between the corresponding shot/receiver pair such that a CO section
describes a (xm-t) domain. A CO section itself we specify by the half-offseth of a
shot/receiver pair. The ZO section is the special case of a CO section with coincident
shot/receiver pairs (h= 0).

For appropriate illustration the CO sections are arranged in a (t-xm-h)-space, where
t denotes the time,xm the midpoint, andh the half-offset. Each point on the (xm-h)-
plane defines one shot/receiver pair and thereby a trace by its coordinates(xm; h). For
the corresponding experiment the source and receiver are located on the seismic line at
xs =xm + h andxg =xm � h, respectively. The CO travel time curves that stem from
the same reflector together define a travel time surface in the (t-xm-h)-space. Figure 3
shows an example of such an illustration in the (t-xm-h)-space. A point in the ZO
section for which the ZO simulation has to be performed is denoted byP0 = (x0; t0).
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The reflection events in the data are the response of the subsurface to propagating
waves that originate and are observed on the surface. However, for our kinematic
approach it is more suitable to consider the associated rays, which we assume to be
normal to the wavefronts. In this manner, one can associate each reflection event with
a ray. This ray takes an appropriate path (determined by the ray parameter) in the
subsurface to provide the (travel) time of the reflection event. In this context we define
the ZO ray to be associated with a primary reflection event in the ZO section. In most
cases this ray is normal to the reflector that generates this reflection event.

The proposed strategies can be applied to complex media but are in the presented
form based on ZO rays with normal incidence on the reflector. Furthermore, the de-
rived formulae that account for inhomogeneous media are, strictly speaking, only valid
in the vicinity of the ZO ray. With regard to ray theory this concerns the paraxial rays
of the (central) ZO ray.

CONSTANT VELOCITY MEDIA

To introduce the CRS stack, we use the constant velocity model shown in fig. 1. Let
us assume that one has chosen the locationP0 = (x0; t0) of a primary reflection event
in the ZO section (see fig. 3). The coordinates of this point denote the location of the
tracex0 and the ZO travel timet0. In addition,x0 defines the location of the coincident
shot/receiver pair. The corresponding ZO ray that connects the seismic line atx0 with
the reflection pointR is shown in dark gray in fig. 2. In the following, we refer to this
ZO ray as central ZO ray. In fig. 2 we have attached an arc segmentCR (shown in dark
gray) to pointR defined by the dip and radius of curvature of the reflector atR.
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Figure 1: Constant velocity model: dome-like reflector. The corresponding ZO rays
are depicted in gray.

Let us firstly determine the ZO traveltime~t0 and the emergence location~x0 of



10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
~

C
R

x0
~ x0

R

R

~

N

v/2 t0
~

v/2 t0

D
ep

th
 [k

m
]

Distance [km]

α

α

Figure 2: Constant velocity model: illumination of point~R and pointR, both located
on the circleCR.

the respective ZO ray for an arbitrary point on the circular reflector specified by the
(emergence) angle~� (see fig. 2). The equations for~t0(~�) and~x0(~�) can be written in
dependency of the coordinates ofP0 and attributes associated with the central ZO ray
toP0:

~x0(~�) = x0 +RN (cos� tan ~�� sin�) ; (1)

~t0(~�) =
2

v
RN

�
cos�

cos ~�
� 1

�
+ t0 ; (2)

with RN = RR +
v

2
t0 : (3)

Here,� denotes the emergence angle of the central ray andRR the radius of the circle
CR, i. e. the radius of curvature of the reflector at the reflection pointR. Thus, knowing
� andRR of the reflector atR one can determine the ZO location~x0 and the ZO travel
time~t0 for another point~R on the circle specified by the angle~�.

A CRP trajectory defines the locations of all primary reflection events in the (t-xm-
h)-space that pertain to the same reflection point on the reflector. The CRP rays for
R and ~R associated with the respective CRP trajectories are depicted in light gray in
fig. 2. To compute the CRP trajectory for a point on the circleCR (see fig. 2) we use
the coordinate of a point (~x0(~�), ~t0(~�)) in the ZO section and the associated angle~�
as initial values (eqs. (1) and (2)). The CRP trajectory for each point~R on the circle
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CR is then given by the following formulae:

xm(~�; h) = ~x0(~�) + ~rT

0@
vuut h2

~rT (~�)2
+ 1� 1

1A ; (4)

t2(~�; h) = 4
h2

v2
+

1

2
~t20(~�)

0@
vuut h2

~r2T (~�)
+ 1 + 1

1A ; (5)

with ~rT (~�) =
v

4

~t0(~�)

sin ~�
:

The CRS surface shown in fig. 3 is the family of all CRP trajectories provided by all
reflection points on the circleCR and can thus be constructed with the parameters~�
andh. Instead of~� one could also directly use a paraxial location~x0 as a parameter
for the CRS surface, which can account for the case ofRN =1 that corresponds to a
planar reflector in constant velocity media.
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Figure 3: 3-D data space: CRS surface constructed with the CRP trajectories (dark
gray) of a circular reflector. The ZO travel time curve for the circleCR is depicted in
black.

The boundariesx0min andx0max of the CRS surface in the ZO section of fig. 4
define the aperture in the ZO section for the CRS surface. They can be determined
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Figure 4: Constant velocity model: ZO ray and two hypothetical wavefronts that
emerge atx0 on the surface.

for instance by specifying a flare angle (~�min<�< ~�max). The location of all traces
in the (xm-h)-plane intersecting the CRS surface define the CRS stack range. In other
words, this range is given by the projection of the CRS-surface onto the (xm-h)-plane,
i. e. by eq. (4).

Another way to provide the CRP trajectory for pointP0 is to place a fictitious point
source atR. In fig. 4, a portion of the resulting circular wavefront that emerges at
x0 with radiusRNIP = v

2
t0 is depicted at different instants of time. We refer to this

wave asNIP wave according to Hubral (1983). By means of this experiment the travel
time for an arbitrary source/receiver pair can be determined by a double square root
expression. Taking into account the dip of the reflector and Snell's law atR provides
the rays and thereby the locations of the source/receiver pairs that illuminate pointR
on the reflector. Hence, location and travel time for a source/receiver pair are strictly
determined by� andRNIP . For constant velocity media the value~RNIP (~�) provided
by other points on the circle is simply given by~RNIP (~�)= 2

v
~t0(~�).

Using the exploding reflector model for circleCR yields the hypothetical circular
wavefront emerging atx0 with radiusRN (fig. 4). According to Hubral (1983) we refer
to such a wave asnormalwave. The purpose of usingRN instead ofRR is to express
eqs. (1) and (2) with attributes (�,RN ) as expected atx0 on the surface.

The advantage of using the attributes�, RNIP andRN will become clear later
on, when we derive approximations that describe the CRS surface for inhomogeneous
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media.

INHOMOGENEOUS MEDIA

Our objective is to derive formulae for the CRS stack in inhomogeneous media with
constant near-surface velocityv0. One will observe that such 2-D media can be re-
placed by an auxiliary homogeneous medium with the velocityv0. Thus, we make use
of the constant-velocity results above.

In order to investigate these formulae and to illustrate our assumptions we use
the inhomogeneous model of fig. 5. It shows an inhomogeneous model with three
constant-velocity layers and the ZO rays reflected by the dome-like structure. This
structure is the same as the one in the constant velocity model, but over-lain by an
additional interface. In the following, we are only interested in the reflection events
of the dome-like structure and refer to it as the reflector. Furthermore, only the travel
times of reflection events that pertain to this reflector are shown in the (t-xm-h)-space.
The upper interface can already be handled with the CRS stack described above.
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Figure 5: Inhomogeneous model: two interfaces between three homogeneous layers.
The ZO rays of the dome are shown in gray.

In the following one has to clearly distinguish between concepts that have the at-
tributes “true” and “auxiliary”. They relate to either the true or auxiliary model defined
below. In fig. 6 we have plotted the true ZO ray as a bold dark gray curve connecting
x0 with R. Now, imagine a point source atR in the true velocity model that explodes
at timet=0. This yields a hypothetical wavefront emerging atx0 with a specific emer-
gence angle� and a specific radius of curvatureRNIP . A part of this wavefront is
shown in dark gray at different instants of time in fig. 6. The emergence angle� of the
NIP wave atx0 coincides with the emergence angle of the ZO ray.
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The attributes� andRNIP observed atx0 are sufficient to construct the circle with
radiusRNIP centred atR� = (x0 � RNIP sin�;RNIP cos�). A part of this circle is
depicted in light gray in fig. 6. In other words, pointR� is defined as the center of
curvature of the hypothetical wavefront that originates at pointR on the true reflec-
tor and emerges atx0 (Hoxha (1994)). The homeomorphic image (HI) of a reflector
(Berkovitch et al. (1994)) is defined by all centers of curvature provided by allNIP
waves and ZO rays of the reflector. Figure 6 shows the homeomorphic image of the
reflector as light gray crosses.

The auxiliary model is defined as a medium with a constant velocity that is equal
to the near-surface velocityv0 of the true model. If one places a point source intoR�

of this auxiliary model one obviously obtains a circular wavefront emerging atx0 with
the same attributes (emergence angle� and radius of curvatureRNIP ) as would be
provided by a point source atR in the true model. Since a constant velocity model is
provided by the auxiliary model one can make use of these formulae by assuming the
trueNIP wave to be circular. This is a reasonable approximation in the vicinity of the
central ZO ray. Replacingt0 by 2

v0
RNIP in eqs. (4) and (5) one immediately obtains

the CRP trajectory forR� in the auxiliary model. However, illuminating pointR� in
the auxiliary model is not to be confused with illuminating a diffraction point: one has
to take into account its dip (defined by the emergence angle� of the ZO ray), i. e. to
consider it as a reflection point.

In order to obtain an appropriate approximation of the travel times for pointR
in the true model, one additionally has to consider that the ZO travel times for point
R in the true model and pointR� in the auxiliary model will in general be different.
Therefore, we make use of a time delay similar to the one introduced by de Bazelaire
(1988). This time delay is simply given by the difference of the true ZO travel timet0
and the auxiliary ZO travel time2

v0
RNIP . One can also explain this time delay with

the one-way travel times provided by the hypothetical experiments. There, one has to
consider that both hypothetical sources atR andR� have to explode at different times
if their wavefronts are expected to arrive simultaneously at pointx0. This implies
that the hypothetical source atR� in the auxiliary velocity model should explode at
t= t0

2
� RNIP

v0
if its counterpart, the hypothetical source in the true velocity model atR,

explodes att= 0.

To construct the CRS surface for pointP0 our aim is again to use CRP trajecto-
ries that pertain to a reflector segment aroundR. For our approximation, each CRP
trajectory requires the initial values~x0, ~t0, ~� and ~RNIP .

Our aim is to derive formulae for these values that are independent of the macro ve-
locity model. Therefore, we use the exploding reflector model (section ) that provides
thenormalwave. The corresponding wavefront at different instants of time is shown
in light gray in fig. 7. Provided that the reflector explodes at timet= 0, the normal
wave emerges at timet0=2 at x0 on the surface with angle� and radius of curvature
RN . Approximating thenormalwavefront that emerges atx0 by a circular wavefront
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Figure 6: Inhomogeneous model: homeomorphic image (dark gray crosses) of the
reflector. The wavefronts of theNIP wave for pointR are shown at different instants
of time in dark gray. The surface's influence on theNIP wave is not considered.
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Figure 7: Inhomogeneous model: wavefronts of thenormalwave (light gray) at dif-
ferent instants of time. The radius of curvature of the corresponding wavefront atx0 is
shown in dark gray. The surface's influence on thenormalwave is not considered.
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with radiusRN , we can use~� as variable to specify a ZO ray and its associated CRP
trajectory.2 Thus, we want to compute the remaining initial values~x0, ~t0 and ~RNIP in
dependency of~�.

For the values of~x0 and~t0 this approach yields the same formulae as in the constant
velocity case (eqs. (1) and (2)). However, the relationship betweenRN andRR (eq. (3))
is no longer valid. Assuming that the values of~RNIP are (as the travel time~t0) constant
along the circularnormalwavefront that emerges atx0, one can use the same approach
providing~t0(~�) to determine~RNIP (~�) for points on the surface. The formulae for~x0,
~t0 and ~RNIP then read:

~x0(~�) = x0 +RN (cos� tan ~� � sin�) ; (6)

~t0(~�) =
2

v0
RN

�
cos�

cos ~�
� 1

�
+ t0 ; (7)

~RNIP (~�) = RN

�
cos�

cos ~�
� 1

�
+RNIP : (8)

These equations provide all initial values needed to construct the CRS surface with
CRP trajectories. As stated above, one has to introduce a time delay for a CRP trajec-
tory that accounts for inhomogeneous media. The time delay for each CRP trajectory
as part of the CRS surface is given by~t0(~�) � 2

v0
~RNIP (~�). Subtracting eq. (7) from

eq. (8) yields~t0(~�)� 2
v0
~RNIP (~�) = t0 � 2

v0
RNIP . Hence, the approximation of~RNIP

yields the same time delay for all CRP trajectories that contribute to a CRS surface.
The (delayed) CRS surface is then given by:

xm(~�; h) = ~x0(~�) + ~rT (~�)

0@
vuut h2

~r2T (~�)
+ 1� 1

1A ; (9)

�
t(~�; h)�

�
t0 � 2

v0
RNIP

��2
= 4

h2

v20
+

2

v20
~R2
NIP (~�)

0@
vuut h2

~r2T (~�)
+ 1 + 1

1A (10)

with ~rT (~�) =
1

2

~RNIP (~�)

sin ~�
:

Note also that these equations reduce to the constant velocity case forRNIP = v0
2
t0.

In fig. 9 we have chosen a flare angle to determine the aperture in the ZO section
(and thereby the CRS stack range). The segment of the reflector that provides ZO rays
emerging in this aperture is plotted in bold black. Figure 8 shows the CRS surface
constructed by means of the attributes�, RNIP andRN for pointP0.

The homeomorphic image of the reflector segment aroundR is marked by black
crosses in fig. 9. With eq. (8) one can compute the kind of homeomorphic image
that is assumed for the reflector segment aroundR. It is given by the circular arc
segment (light gray crosses in fig. 9) with radiusRN � RNIP centered at (x0 �
RN sin�;RN cos�). Assuming thenormalwavefront to be circular in the vicinity of
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Figure 8: 3-D data space: CRS surface constructed with CRP trajectories.
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crosses) HI of the black reflector segment. The approximated HI defines the circular
reflector in the auxiliary model.
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x0 is a reasonable approach and is for this example confirmed by fig. 7. Consequently,
the emergence angles of the truenormal wave are well approximated by the emer-
gence angles~� of the circular wavefront. The strong deviation between the true and
the assumed HI is therefore mainly due to the approximation of the values of~RNIP

(eq. 8).

Even if for this example eq. (8) does not provide a good approximation of the true
values of ~RNIP , some comparisons later on will show that for paraxial locations and
not too large offsets the CRS surfaces provides a good approximation of the theoretical
travel times.

TAYLOR-SERIES EXPANSION OF THE CRS SURFACE

In the following we provide two different Taylor expansions of the CRS surface in
the (t-xm-h)-space: one with respect tot, the other with respect tot2. A justification
for the expansion oft2 is given by Ursin (1982), who concluded that a hyperbolic
approximation is more suitable than the parabolic form. These expansions will only be
performed for the CRS surface given by eqs. (9), (10) that account for inhomogeneous
media. However, for the constant velocity case they reduce to the approximations of
eqs. (4), (5) by substitutingv0

2
t0 for RNIP . The second order expansions are given by

t(xm; h) = t0 +
2 sin�

v0
(xm � x0) +

cos2 �

v0

 
(xm � x0)

2

RN

+
h2

RNIP

!
; (11)

t2(xm; h) =
�
t0 +

2 sin�

v0
(xm � x0)

�2
+

2 t0 cos2 �

v0

 
(xm � x0)

2

RN
+

h2

RNIP

!
(12)

These equations were already derived by means of paraxial ray theory and for instance
formulated by Schleicher et al. (1993). In the following we will use their terminology
and refer to eqs. (11) and (12) as parabolic and hyperbolic approximation, respectively.
The region of convergence of these approximations depends on the chosen attributes.
Later on, we will show some comparisons with the parametric CRS surface and theo-
retical travel times for the inhomogeneous model.

Let us now investigate formulae (11) and (12) in the CMP gather forx0 and in the
ZO section. The CMP gather is defined by the relationxm =x0. Equations (11) and
(12) here reduce to

t(h) = t0 +
cos2 �

v0

h2

RNIP
; (13)

t2(h) = t20 +
2 t0 cos2 �

v0

h2

RNIP
: (14)

2For a planarnormalwave one has to use~x0 as variable.
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Introducingq = cos2�
RNIP

shows that only one parameterq is required in the CMP gather
(instead of the two attributes� andRNIP ).3 The hyperbolic approximation in the CMP
gather is commonly formulated by substitutingv2NMO for 2v0RNIP

t0 cos2 �
.

In the ZO section, which is specified byh= 0, eqs. (11) and (12) read

t(xm) = t0 +
2 sin�

v0
(xm � x0) +

cos2 �

v0

(xm � x0)
2

RN
; (15)

t2(xm) =
�
t0 +

2 sin�

v0
(xm � x0)

�2
+

2 t0 cos2 �

v0

(xm � x0)
2

RN

: (16)

As expected, eqs. (11) and (12) do not depend onRNIP in the ZO section. This
confines the search to attributes� andRN in this section.4

The HIs that correspond to the parabolic and the hyperbolic approximations (eqs. (11)
and (12)) in the range~x0min< ~x0< ~x0max are shown in fig. 10. The HI of the parabolic
approximation (light gray circles) yields the worst result whereas the HI of the hy-
perbolic approximation (light gray diamonds) is close to the HI of the CRS surface.

COMPARISONS

To get an idea of the accuracy of the CRS formulae and their second order Taylor ex-
pansions, we investigate their stacking surfaces constructed for pointR on the reflector
in different CO sections (figs. 11 - 12). For the comparison of travel times in gathers
and sections we have centred a wavelet at the theoretical travel time on each trace. The
chosen wavelet is a lobe of a delayed cosine with its length equal to10 ms. Traces that
are shown in the CO sections are determined by the CRS stack range of fig. 8. The
dashed light gray curve denotes the intersection of the respective CO section with the
CMP gather.

Provided the circular approximations hold, one observes that the CRS surface as
well as its hyperbolic and parabolic approximations show good agreements with the
theoretical traveltime curves.

3The third order Taylor expansion reduces to the second order Taylor expansion in the CMP gather.
A fourth order Taylor expansion would not reduce the number of search parameters. The influence of
the fourth-order term, however, may be too small to allow a search with all parameters in the CMP
gather.

4This already applies to the CRS surface so that there is actually no need to use a Taylor expansion
in the ZO section. Here, the CRS surface can be brought into an explicit form by using~x0 instead of~�
as variable.
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Figure 10: Inhomogeneous model: HI of the CRS surface (light gray crosses), the
hyperbolic (light gray diamonds), the parabolic (light gray circles) approximations
and the true HI of the reflector segment (black crosses).
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Figure 11: ZO section: the CRS surface (solid) compared to its parabolic (long dashed)
and hyperbolic (short dashed) expansions in the ZO section.
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Figure 12: CO section: the CRS surface (solid) compared to its parabolic (long dashed)
and hyperbolic (short dashed) expansions for a half-offseth=0:2 km.

CONCLUSION

The CRS stack is a model independent seismic imaging method and thereby can be
performed without any ray tracing and macro velocity model estimation. As a result
of a CRS stack one obtains in addition to each simulated ZO reflection time important
wave-field attributes: the angle of emergence and the radii of curvature of theNIP and
thenormalwave. These attributes can subsequently be used to derive an approximation
of the inhomogeneous 2-D macro velocity model (Hubral and Krey (1980), Goldin
(1986)) which allows to determine an image in the depth domain.

By means of the Taylor series expansions, the CRS stack can be applied to traces on
an arbitrarily irregluar grid without the need to interpolate. Additionally, the simulated
ZO section and the attribute sections are not restricted to the (possibly irregular) input
data geometry.
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