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Determining the ray propagator from traveltimes
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ABSTRACT

3-D prestack migration of the Kirchhoff type is still a task of enormous computational
effort. Therefore, many implementations just compute traveltime tables and perform
an unweighted summation stack along diffraction curves. At best some simplified mi-
gration weights are applied to obtain a “true amplitude” migrated image. However,

to correctly determine reflection amplitudes, information on the wavefield dynamics
in 3-D media like the ray propagator is essential. The ray propagator depends on
the second derivative of traveltimes. It will be demonstrated in this paper, how these
derivatives are determined from traveltimes without numerical differentiation. The ray
propagator leads to important applications, since it provides an efficient technique
to compute migration weights, dynamic (NMO) and divergence corrections, Fresnel
zones or amplitudes. Another application of the ray propagator is the efficient and
accurate interpolation of traveltimes, resulting in great savings of computational time
and mass storage, since only coarse grid traveltime tables need to be computed and
saved. The presented numerical examples indicate that the storage requirements of
traveltime tables can be reduced by three orders of magnitude for 3-D data (i.e., in-
stead of 30 GBytes of travel time tables you store only 30 MBytes). Since migration
weights and the other above mentioned quantities can be computed “on the fly”, sav-
ings in mass storage are even considerably larger. Itis sufficient to compute just coarse
grid traveltime tables to perform a true amplitude prestack depth migration.

INTRODUCTION

Using Finite Difference (FD) eikonal solvers (Vidale, 1988, e.g.,) or wave front con-
struction (Vinje et al., 1993; Ettrich and Gajewski, 1996) traveltime tables are com-
puted very efficiently. This is the foundation for the summation stack along diffrac-
tion surfaces for a Kirchhoff type migration. For a true amplitude migration, how-
ever, proper migration weights have to be applied in this summation (Schleicher et al.,
1993a). The determination of the migration weights require the knowledge of wave-
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field dynamics, like the wavefront curvature, i.e., second derivatives of the traveltimes.
These derivatives build the foundation of the ray propagator, which can be used al-
ternatively to determine migration weights, geometrical spreading, Fresnel zones or
traveltime approximations (Hubral et al., 1992).

Numerical differentiation of traveltimes is a very unstable process and, therefore,
not practical in real applications. Obtainiagf' derivatives of traveltimes can be also
achieved by dynamic ray tracing. This, however, is restricted to the ray tracing tools
to generate traveltime tables and is involved with an increase in computational effort
as well as an increase in mass storage requirements, since these derivatives have to be
stored for later applications. Hubral et al. (1993) presented a procedure to compute
the complete ray propagator from traveltime measurements. Their technique is based
on the parabolic traveltime approximation. Two different experiments (zero-offset and
CMP) are necessary to determine the propagator. Sun and Gajewski (1997) presented
a procedure to compute migration weights from the kinematics of the wavefield, how-
ever, their technique is only applicable to the common source configuration.

In this paper we exploit the hyperbolic paraxial traveltime approximation to deter-
mine the complete propagator for any reflected ray in a arbitrary 3-D layered model
from traveltime tables of shot gathers (which is usually the configuration used when
traveltimes are computed). The knowledge of the propagator allows several applica-
tions important to exploration seismology, like divergence corrections, determination
of migration weights for any source-receiver configuration as well as Fresnel zones
and an efficient and accurate interpolation (up to the second order) of traveltimes.

METHOD

The technique to determine the! derivatives of traveltime can be considered as an
extension of the well knowf? — X2 method, however, for a 3-D model with het-
erogeneous layers, separated by curved interfaces2™taerivatives of traveltimes

are obtained by measuring slopes7ih — X? data fields. It corresponds to the local
determination of linear moveout of squared traveltimes. The basic foundation for the
procedure is given by the hyperbolic paraxial traveltime.

Hyperbolic paraxial traveltimes

We consider an arbitrary 3-D inhomogeneous layered medium with curved interfaces.
A ray connecting the sourcg and the geophoné€' is considered, were the sources
are located on a (curved) surface with coordinateé/=1,2) and the geophones are
located on a on surface with coordinatgs(/=1,2). As mentioned above, we will

not use the parabolic version of the paraxial traveltime as in Hubral et al. (1993), but
its hyperbolic variant. This seems to be more appropriate, since it is known from the
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investigation of layered media, that near vertical reflections are better approximated by
hyperbolic rather than parabolic traveltime curves (for a systematic investigation see
also Ursin (1982)). The hyperbolic paraxial traveltime reads (Schleicher et al., 1993b)

T%(s1,91) = [to—prsr+ QI91]2 +
to[—2srN1sgs + s1Npgsg+ QINIJQJ] (1)

wheret, is the traveltime of the central ray (i.es; =0 andg; = 0). p; andg;

are slowness vectors of the central ray at the source and geophone, respectively, were
two component notation is used (Bortfeld, 1989). The matriggs N;; and Nij
represent second derivatives of traveltimes
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where the derivatives are taken at the central ray. From these derivatives the com-
plete ray propagator can be constructed. These matrices are also the key ingredients
for migration weights of any source-receiver combination, for Fresnel zones and for
dynamic (NMO) and divergence corrections. The second derivatives also provide the
foundation for the interpolation of traveltimes (accurate up to the second order). Eq.
(1) is an approximation to the exact traveltime, which is valid in a “paraxial vicinity” of

the central ray. How large these vicinity might be, is investigated later in a numerical
example for the interpolation of traveltimes.

Determining 2°¢ derivatives of traveltimes

Let us assume, we have computed traveltime tables for a prestack-stack migration, i.e.,
traveltimes for many shots at every grid point of a discretized 3-D subsurface model are
available. The determination of second derivatives of traveltimes reduces to measuring
slopes similar to the well knowh? — X? technique. To make this more obvious, we
reduce the hyperbolic paraxial traveltime equation into its 2-D form and for simplicity
we assume that sources and receivers are located on straight lines. All matrices and
vectors become scalars in this case, i.e.,

T%(s,g) = [to — ps + qg]* + to[—2sNg + >N + ¢°N] . (2)

p andg correspond to the slowness projected onto the source and receiver line at the
source and at the geophone, respectivelgnd ¢ are the offsets of the paraxial ray
from the source and the geophone afd= 9% /0sdg, N = 9*t/ds*, N = 0% /dg>

are2™d derivatives of traveltime. If we further assume a laterally homogeneous layered
model (i.e.,N = —N) and take a CMP gather, i.e.= —¢ with s = /2 as half offset

and considering the zero offset ray we arrive at the known result

T2

1
T%(r) =15+ <toNr* = 1§+ —5—
2 VNMO
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wheret, is the traveltime of the zero offset ray an@ ;o is moveout velocity (as a
good approximation to the RMS-velocity of the Dix formula). From this equation it

is obvious that the second derivative of traveltime is determined by the slope of the
T? — r? graph or, in other words, by the linear moveout of squared traveltimes for
the zero offset ray and the paraxial ray. The result also indicates MHeatds to

a dynamic correction of the gather. The same conclusions apply to egs. (1) and (2)
but, please note, that these equations are valid for laterally heterogeneous media with
curved interfaces and that they can be applied to any ray, not only the zero offset ray.
The technique corresponds to locally fitting segments of hyperbolas to the real travel-
time curve. In the following subsection we will describe the actual implementation of
the procedure.

Implementation

We are not really interested in computing paraxial rays but we want to determine
274 derivatives of traveltimes using properties of paraxial rays expressed through eq.
(1) for the 3-D case or eq. (2) for the 2-D case. For simplicity we will explain
the implementation for the 2-D situation but the extension to 3-D is straight for-
ward. For prestack depth migration traveltime tables for many shots of a discretized
subsurface model are computed. Fig.1 shows schematically such a traveltime grid
where two shots are considerefl &nd S*). Let us first fix the source position,
(i.e., s = 0) and move the geophone (i.¢.,= dz). Since we have directly com-
puted the traveltimes S¢) at G andt(SG*) at G*, we can solve forV in (2), i.e.,

N = (3(SG®) — [tH(SG) + qdzx]?) /t(SG)dz?. All quantities on the right hand side are
known. The traveltimes are taken from the tablésjs given by the discretization of

the subsurface. If ray tracing is used to generate the traveltime table also the slowness
q is directly available. If FD eikonal solvers are used to generate the traveltimes, the
gradient (slope) of the traveltimes determines the slowness approximately.

To determineV we have to consider the traveltimgs=) at & of the neighboring
shotS* and againi (SG) atG of shotS. The distance betweehandS® is s = dx, and
the geophone position is fixed, i.e.= 0. We solve (2) forV, i.e., N = (12(S*G) —
[t(SG) — pdz)?) [t(SG)dx?. To determine the remaining derivati%g we consider the
traveltime t(SG) of shot at ¢ and the traveltime(S*G*) of shotS” atG*. We solve
again (2) forN where we use the results fof and NV obtained above. The above
procedure is repeated for any grid point of the mesh except the boundaries. With
the derivativesV, N and N we can compute the geometrical spreading, migration
weights or Fresnel zones, i.e., the ray propagator at any grid point of the discretized
subsurface model (for details see, e.g., Hubral et al., 1992). Another application is the
interpolation of traveltimes, which is demonstrated by a numerical example in the next
section. Since eq. (1) is an approximation to the exact traveltime, the results are valid
in a paraxial vicinity away from the central ray. How large this vicinity might be is
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Figure 1: Traveltimes of source-geophone combinations for shaisd S* to deter-
mine the complete ray propagatorat
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also discussed below.

APPLICATION: INTERPOLATION OF TRAVELTIMES

Eq. (1) and (2) can be used to interpolate traveltimes to any location between grid
points. As it was described above, we can interpolate only horizontally. However, the
same procedure to determine derivatives can be performed for vertical receiver lines.
This allows to interpolate to any position between the grid points. In a first test a
constant velocity model was investigated. Since both, diffraction and reflection curves
are hyperbolic in this case, a good performance of eq. (2) to interpolate traveltimes is
expected. Traveltimes computed on a coarse grid were interpolated onto a fine grid
(number of samples was increased by a factor of 10 for each spatial direction) and
compared with the exact results. The relative errors of exact and interpolated travel-
times were in the order of0~°%, i.e. in the order of machine accuracy for single
precision word length. Although it is an expected result, since exact traveltime curves
are hyperbolas it justifies the above described procedure.

The second numerical example of interpolating traveltimes is carried out for a
model with a constant vertical gradient, i.83/0> = 0.5s~! where the velocity at
the surface is 3.0 km/s. Such a velocity model results in traveltime curves for diffrac-
tions and reflections which are non hyperbolic. The model dimensions are 2 km in
horizontal direction and 1 km in vertical direction. A source at a distance and depth of
1 km is considered. The fine grid has 201x101 grid points and the coarse grid 21x11
grid point, i.e., in each spatial direction the number of grid points was reduced by a
factor of 10. Traveltimes using a FD eikonal solver were computed to every grid point
of the fine grid. This grid was resampled to the coarse grid st?e.derivatives of
traveltimes for the coarse grid were computed according to the above described proce-
dure. In the next step eq. (2) was used to interpolate traveltimes from the coarse grid
onto the fine grid.

Fig. 2 shows the relative errors between the traveltimes computed directly on the
fine grid and by interpolation from the coarse grid starting from a minimum distance
of 100m from the source. The maximum relative error is below 0.2%. The error
stays small (below 0.6%) even closer to the source were the wavefront curvature is
strongest. For comparison, in Fig. 3, the relative errors obtained with the popular
bilinear interpolation are shown (same gray scale, amplitudes greater than 0.2% are
clipped). Here the maximum error is greater than 7%, and it increases even further for
grid points more close to the source.

The performance of the hyperbolic paraxial interpolation using eq. (2) is consid-
erably better, even far away from the source. Reducing the grid density by a factor
of 10 in each spatial direction leads to tremendous savings in mass storage. However,
the sampling interval of the coarse grid must match the velocity model such that the
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Figure 2: Relative errors between interpolated traveltimes computed from the coarse

grid with the directly computed traveltimes of the fine grid. Maximum relative error is
below 0.2%.



194

Distance [km]

0 0.5 1.0 1.5
O_
0.2-
0.20
0.15
— S
§0.4— <
£ 010 &
: :
o o
- 0.05
0.6-
_-O

0.8+

Figure 3: Relative errors between interpolated traveltimes computed from the coarse
grid using bilinear interpolation with the directly computed traveltimes of the fine grid.

Same grey scale as Fig. 2, amplitudes greater 0.2% are clipped. Maximum relative
error is more than 7%.
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smallest spatial variations of velocity are in the dimension of the coarse grid sampling.

This may lead to a smaller grid steps of the coarse model. If the actual receiver sam-
pling is, e.g., 20 m, a coarse grid model with a spatial sampling of 200 m might be to

large. Please note, that eq. (1) or (2) do not require a uniform sampling for all spatial

coordinates. The coarse grid might exhibit a faster sampling in the vertical direction,

since velocity varies fastest with depth for most earth models. It is interesting to note

that shots can be interpolated using eq. (1) or (2), i.e., traveltimes are computed only
for a few shots, which are completed by interpolation.

CONCLUSIONS AND DISCUSSION

A procedure to determine the complete ray propagator from traveltimes was presented.
The ray propagator has important applications in exploration seismology, like compu-
tation of migration weights, divergence corrections, and Fresnel zones. The ray prop-
agator was used here for the interpolation of traveltimes from a coarse grid to a fine
grid. Itis quite common in prestack depth migration to generate traveltime maps on
a coarse grid and to perform the actual migration on a fine grid which is obtained by
interpolation. It was shown, that using an interpolation of traveltimes based on the
hyperbolic paraxial traveltime is by far superior to the popular bilinear interpolation
(and even paraxial approximation, not shown here), since the accuracy is higher. Using
egs. (1) or (2) not only traveltimes between receivers can be interpolated but also shot
points. Since also the geometrical spreading can be derived from the ray propagator
complete high-frequency Green's function can be computed.

In the numerical example the coarse grid was reduced in size by a factor of 10 for
each spatial direction leading to tremendous savings in mass storage of the traveltime
tables. Since all other quantities for migration like migration weights, divergence cor-
rections or Fresnel zones are computed “on the fly” from the traveltime tables using
the ray propagator, there is no need to save anything else than traveltime tables, lead-
ing to even higher savings in mass storage. We conclude, that it needs only coarse grid
traveltime tables (and slownesses) to carry out a computationally efficient true ampli-
tude aperture optimized (Fresnel zone based) migration using minimized mass storage.
Introducing the eigenwave based traveltime expansion (Tygel et al., 1997), the number
of operations to generate the ray propagator can be reduced resulting in an even faster
procedure.
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