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Traveltime computation for 3D anisotropic media

N. Ettrich1

ABSTRACT

We present a method for computing first-arrival traveltimes in three dimensional (3-
D) anisotropic media. The basic routine is a finite-difference (FD) eikonal solver for
elliptically anisotropic media. It allows for arbitrary orientation of the tensor ellip-
soid and for strong anisotropy. To achieve stability a wavefront expansion scheme is
applied. Second-order approximations of the eikonal equation make the FD eikonal
solver highly accurate with relative errors of the order of a few permille for homoge-
neous models. The method is stable also in models with strong velocity gradients. A
perturbation scheme for a first-order correction of traveltime is included. It allows to
consider media with general anisotropy.

INTRODUCTION

Since anisotropy has been recognized as an important feature of seismic wave propaga-
tion there is an interest of extending methods of exploration seismology to anisotropic
media. Prestack Kirchhoff-type migration and traveltime tomography require the fast
computation of traveltimes which is still a challenge in 3-D even for isotropic media.
For computational efficiency we develop a FD eikonal solver for which several strate-
gies were derived in the past (for 3-D isotropic media, e.g., Vidale (1988)). For 2-D
anisotropic media methods by, e.g., Lecomte (1993) and Dellinger and Symes (1997)
(with extension to 3-D) exist. Anisotropic wave propagation is a 3-D process. The
eikonal equation generally does not factorize into lower order eikonal equations for
different types of waves. In the framework of FD methods 6th-order polynomials for
components of slowness vectors have to be solved numerically which is slow and may
lead to instabilities. In contrast, in elliptically anisotropic media the eikonal equation
for the considered wave type is only slightly more complex compared to the isotropic
case, and all required relations are available in closed form. Elliptical anisotropy is
of limited physical significance. The FD code for elliptically anisotropic media can,
therefore, be understood as a basic routine for computation of traveltimes in arbitrarily
anisotropic media. If the deviation between an elliptically anisotropic model and the
model with given anisotropy allows for a linearization of traveltimes, a computation
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by a first-order perturbation method embedded into the FD scheme is possible Ettrich
and Gajewski (1998).

BASIC FORMULAS

An elliptically anisotropic medium is defined by phase velocities~vh and~vv in hori-
zontal and vertical direction and two angles1 and2 describing the orientation of the
crystal coordinate system with respect to the global Cartesian coordinate system. Here,
directions and all quantities marked with the�-sign refer to the crystal coordinate sys-
tem. The slowness surface (eikonal equation) for the slowness vector(~px; ~py; ~pz) reads

~v2h~p
2
x + ~v2h~p

2
y + ~v2v ~p

2
z = 1 (1)

and allows for the computation of one slowness vector component if the others are
known and for the computation of phase velocity for a given phase direction because
the absolute value of the slowness vector equals inverse phase velocity. In the crystal
coordinate system no azimuthal dependence upon rotation around the~z-axis exists.
Therefore, the angle of inclination~�ph = atan(

q
~p2x + ~p2y=~pz) is sufficient to describe

the position at the slowness surface. The corresponding direction~�gr and absolute
value~vgr of the group velocity vector are simply:

tan ~�gr =
~v2h
~v2v

tan ~�ph ; ~vgr =
~vph

cos (~�gr � ~�ph)
: (2)

However, some stencils of the program work on the eikonal equation in the global
Cartesian coordinates where eq. (1) is transformed to:

Ap2x +Bp2y + Cp2z + 2Dpxpy + 2Epxpz + 2Fpypz = 1: (3)

CoefficientsA toF are functions of1, 2, ~vh, and~vv.

FD APPROXIMATION OF THE EIKONAL EQUATION

In 3-D preferably a coarse grid should be used. Therefore, we are looking for a second-
order approximation of the eikonal equation. While in 2-D a second-order formula can
be derived by determining the first-order expressions for the slowness vector compo-
nents and inserting them into the 2-D eikonal equation (Vidale (1988)) we follow here
a different strategy. Similar to Vidale (1990) (his eq. 2) we make an ansatz for the
searched traveltimet9 at the corner point of a cubical cell (see Fig. 1, traveltimes
known at points3–8) where the squared difference(t9 � t0)2 is given by (Leidenfrost
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and Gajewski (1998))

(t9 � t0)2 = w0 + w1[(t5 � t3)2 + (t7 � t8)2]+
w2[(t5 � t4)2 + (t6 � t8)2]+
w3[(t6 � t3)2 + (t7 � t4)2]+
w4[(t3 � t4)2 + (t6 � t7)2]+
w5[(t6 � t5)2 + (t8 � t4)2]+
w6[(t7 � t5)2 + (t8 � t3)2] :

(4)
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Figure 1: Computation starting at point 0.

To determine the weightswi, i = 1; � � � ; 6, eq. (4) must be satisfied for plane waves
with normal vectors inx-, y-, andz-direction (directions 1,2,3) and in direction of the
diagonalsx-y, x-z, andy-z (directions 4, 5, 6). We, therefore, calculate traveltimestk
at points(xk; yk; zk), k = 3; � � � ; 9, using the plane wave formula

n(j)x (xk � x0) + n(j)y (yk � y0) + n(j)z (zk � z0) = vjtk (5)

for plane waves with normal vectors(n(j)x ; n(j)y ; n(j)z ) in each of these six directions
j, j = 1; � � � ; 6. The phase velocityvj for directionj is obtained by transforming
(n(j)x ; n(j)y ; n(j)z ) into the crystal coordinate system and solving eikonal equation (1).
Since eq. (4) is an approximation for the eikonal equation all quantities used here
refer to the phase velocity, not the group velocity vector. Inserting the plane wave
traveltimes for each of the six directions into ansatz (4) and solving the system of
linear equations for the six unknownswi we find:

w1 = 1:5� w0

4h2
(2v24 + 2v26 � v21 � v23)

w2 = 1:5� w0

4h2
(2v24 + 2v25 � v22 � v23)

w3 = 1:5� w0

4h2
(2v25 + 2v26 � v21 � v22)

w4 = w0

4h2
(2v24 � v21 � v22)� 0:5

w5 = w0

4h2
(2v26 � v22 � v23)� 0:5

w6 = w0

4h2
(2v25 � v21 � v23)� 0:5;

(6)

whereh denote grid spacing andw0 = 3h2=v27. Velocity v7 is the phase velocity in
direction of the big diagonal from point 0 to point 9.
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Formula (4) with coefficients (6), called stencil 1, is applied to the majority of grid
points. It is applicable if seven grid points of the actual grid cell are already timed.

SCHEME OF EXPANSION

To retain causality and to guarantee stability we expand wavefronts (Qin et al. (1992))
rather than cubes (Vidale (1990)). This is achieved by ordering the outer points of the
irregular volume of timed points with respect to traveltime from minimum to maxi-
mum. In each step, the first point of this ordered traveltime array is picked to compute
traveltimes to adjacent points. Actually timed points are inserted into the traveltime
array due to their traveltime, and in the next step this procedure is repeated. If point0
(see Fig. 1) is such a point of minimum traveltime and if points1, 2, 3, and4 are also
already timed the traveltime to point8 can be computed and consecutively to point
6. Formulas of Vidale (1990) (his formulas 3 and 4) are modified for this purpose to
solve the eikonal equation (3). To compute traveltimet8 slowness vector components
px andpy are approximated bypx = (t3 � t1)=(2h) andpy = (t4 � t2)=(2h), and the
eikonal equation (3) is solved for the remaining componentpz . Then,t8 is t0 + hpz ,
with grid spacingh. This is the formula with lowest accuracy (stencil 3). Traveltime
t6 is obtained by approximatingpy = (t4 � t2)=(2h), px = (t3 � t0 + t6 � t8)=(2h)
andpz = (t8 � t0 + t6 � t3)=(2h). With theses expressions for the slowness vector
components the eikonal equation (3) is solved for the searched traveltimet6 (stencil
2).

ACCURACY AND STABILITY OF THE METHOD

The FD approximation (4) together with (6) is based on a plane wave concept inside the
cubical cells of the grid. Using a homogeneous model we check accuracy for curved
wavefronts. Horizontal velocity is2 km/s, vertical velocity is2:4 km/s. The tensor
is rotated by30o in azimuth and30o in inclination. Grid spacing is 20 m. A cubical
region of five grid points in each direction around the source is initialized using for-
mulas (1), and (2). Fig. 2 (left-hand side) displays numerically computed wavefronts.
Accuracy is quantified in its right-hand side where the maximum relative error does
not exceed0:2%. While the error is largest close to vertical and horizontal direction of
propagation it considerably decreases towards the diagonals and big diagonals.

Further, a horizontally layered model is considered. Parameters of the upper layer
equal parameters of the homogeneous model considered above (anisotropy amounts to
20%). In a depth of0:66 km, both, horizontal and vertical velocity (with respect to the
crystal coordinate system) increase by1:2 km/s, and in a depth of1:0 km they increase
by 1:0 km/s, and0:8 km/s, respectively. Moreover, the tensor ellipsoid is rotated by
additional25o in azimuth here. Wavefronts in Fig. 3 demonstrate the stability of the
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method for such models with strong velocity contrasts. At both interfaces head waves
are generated. Weakly smoothing the model with a central operator of the width of the
grid spacing eliminates the small oscillations of the wavefronts.
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Figure 2: Left: Wavefronts in a homogeneous elliptically anisotropic model;x-z-slices
with offset y=0 km (upper), and1 km (lower) from source. Right: Corresponding
relative errors.

TRAVELTIME PERTURBATION

To compute traveltimes in arbitrarily anisotropic media a perturbation scheme is in-
troduced into the FD eikonal solver. We consider a model with arbitrary anisotropy
as a perturbed model with respect to an elliptically anisotropic reference model. To
first-order the difference of traveltime between two fixed pointsS andP between both
models is given by (Cerveny and Jech (1982)):

�t(P; S) = �1

2

Z t(P )

t(S)
�aijklpiplgjgkdt: (7)

All quantities, i.e., slowness vectorpi, polarization vectorgi and differences of elastic
parameters�aijkl between both models are taken along the ray betweenS andP in
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the elliptically anisotropic reference model where polarization vectors are available
in closed form. Since FD reference traveltimes are directly computed at grid points
rays must be approximated to carry out the integration. Following the local plane
wavefront assumption the associated ray segments inside the cells are straight. We,
therefore, simply multiply the integrand of eq. (7), which is constant for each cell, with
the traveltime difference between reference traveltimetref at point7 andtref at pointQ
(see Fig. 4) and add this contribution of the cell to�t atQ. PointQ is the intersection
of the straight ray segment with the boundary of the cubical cell. The direction of
the ray segment is given by eq. (2) with the angle of phase velocity obtained by finite
differencing reference traveltimes at points0�7. �t atQ is linearly interpolated from
�t at points0 � 3, and, finally, traveltimetpert at point7 in the anisotropic model is
simply tpert = tref +�t.
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Figure 3: Wavefronts in a 3-D elliptically anisotropic inhomogeneous model;x-z-
slices with offsety=0 km (left),0:5 km (middle) and1 km (right) from source.
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Figure 4: Cubical grid cell. Local straight ray segment reaching point7 intersects
boundary of cube in pointQ.

Accuracy of the 3-D FD perturbation method is demonstrated in Fig. 5. The model
consists of two orthorhombic layers with coefficientsA11=4:0, A12=1:5, A13=2:3,
A22=4:5,A23=1:9,A33=6:0,A44=1:0,A55=1:1,A66=1:4 (km2=s2) for the first layer and
A11=6:0, A12=1:3, A13=2:6, A22=6:5, A23=2:9, A33=8:0, A44=2:0, A55=2:2, A66=2:5



177

(km2=s2) for the second layer. All other coefficients equal zero. Traveltime curves for
a surface source atx=y=0:5 km at three vertical receiver lines at 1.x=0:6 km, y=0:5
km, 2. x=1:0 km, y=0:5 km, and 3.x=1:0 km, y=1:0 km are displayed, reduced with
a velocity of3 km/s. The relative error for traveltimes computed with the FD per-
turbation method (short dashes, compare to traveltimes obtained with a ray tracer for
anisotropic media, Gajewski and Psencik (1990), solid lines) is everywhere less than
1%.
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Figure 5: Curves of traveltime in an orthorhombic medium, computed with a ray tracer
for anisotropic media (solid lines), and computed with the FD perturbation method
(short dashes); reference traveltimes for the elliptically anisotropic reference medium
(long dashes).

CONCLUSIONS

The presented algorithm provides a method for the efficient computation of first-arrival
traveltimes in 3-D elliptically anisotropic media. A first-order perturbation scheme is
included to consider arbitrarily anisotropic media. Future work should be devoted to
the determination of best-fitting elliptically anisotropic reference media.
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