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ABSTRACT

By considering arbitrary source-receiver configurations the compressional primary
reflections can be imaged into time or depth-migrated reflections so that the migrated
wavefield amplitudes are a measured of angle-dependent reflection coeffients. In or-
der to do this various migration algorithms were proposed in the recent past years
based on Born or Kirchhoff approach. Both of them treats of a weighted diffraction
stack integral operator that is applied to the input seismic data. As result we have a
migrated seismic section where at each reflector point there is the source wavelet with
the amplitude proportinal to the reflection coefficient at that point. Based on Kirchhoff
approach, in this paper we derive the weight function and the diffraction stack integral
operator for the two and one half (2.5-D) seimic model and apply it to a set of synthetic
seismic data in noise enviroment. The result shows the accuracy and stability of the
2.5-D migration method as a tool for obtaining important informations about the re-
flectivity properties of the earth subsurface, which is of great interest for the amplitude
versus offset (angle) analysis.

INTRODUCTION

In the recent past years we have seen through various published papers an increasing
interest in true amplitude migration methods, in order to obtain more informations
about the reflectivity properties of the earth subsurface. The most part of these works
has treated of this thema either based on Born approximation as given by Bleistein
(1987) and Bleistein et al. (1987), or on ray theoretical wavefield approximation as
given by Hubral et al. (1991), Schleicher et al. (1993) and Martins et al. (1997).

This paper follows the alternative of working the seismic migration problem by
using the ray theoretical approximation for the acoustic wavefield, and considering a
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seismic model where the velocity does not vary along one of the directions of coordi-
nate axes, the so-called 2.5-D seismic model.

Starting from the three dimensional weighted modified diffraction stack operator
as presented by Schleicher et al. (1993), we derive the appropriated method to perform
a 2.5-D true-amplitude seismic migration, finding a necessary weight function to be
applied to the amplitude of the 2.5-D seismic data.

In summary, the paper concists of theoretical development by which we present an
expression for the 2.5-D weight as a function of parameters along each ray branch of
the in-plane trajectory. Moreover, we show examples of application of the 2.5-D depth
true-amplitude migration algorithm to 2.5-D synthetic seismic data in noise enviro-
ment, in order to make a numerical analysis and to verify the stability and accuracy of
the algorithm.

REVIEW OF 2.5-D RAY THEORY

The Seismic Model

In this paper we use the general Cartesian coordinate system being the position vector
x = (x; y; z). Because one of the main concerns of this paper is to apply the ray
field properties in a 2.5-D seismic model in order to study a true-amplitude seismic
migration method, we think of the earth as a system of isotropic layers, where each
layer is constituted by a velocity fieldv = v(x), whose the first derivative with respect
to the second componenty vanishes, having smoothly curved surfaces as upper and
lower bounds, where the upper bound surface�o is the earth surface. Furthermore, we
assume the curvature of each surface is zero along the second componenty-axis. The
intersection between the plane of symmetryy = 0 and the earth surface�o defines the
seismic line.

At our seismic experiment carried out on�o, we consider to be registered only
P � P primary reflections at the source-receiver pairs(S;G) having position vectors
denoted by

xs = xs(�) and xg = xg(�); (1)

where� = (�1; �2) is a vector of parameters on�o.

The high frequency primary reflection wavefield trajectory is then described by a
ray that starts at the source pointS on �o, reaches the reflector�r at the reflection
pointR, defined by a vectorxr = xr(�), � = (�1; �2) being a vector of parameters
within �r, and returns to the earth surface atG, the ray pathSRG. By considering the
2.5-D case, the ray pathSRG is assumed to be totally contained into the planey = 0.
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We introduce other three local Cartesian coordinate systems with the first two hav-
ing origins at the pointsS andG with components(x1s; x2s; x3s) and(x1g; x2g; x3g),
respectively. The third coordinate system has origin at the pointR with components
(x1r; x2r; x3r). The axesx1s andx1g are tangents to the seismic line, whilex3s andx3g
are downward normal to the�o. The components(x1r) and(x3r) are defined in such
way that the former is tangent to the reflector�r within the symmetry planey = 0,
while the latter is upward normal to the reflector. The second componentsx2s, x2g and
x2r have the same direction of they component in the general Cartesian coordinate
system.

The Ray Theory

By considering only the 2.5-D wavefield propagation within the symmetry planey =
0, we assume�2 = �2 = 0, �1 = � and�1 = �, simplifying the notation, so that we have
xs = xs(�), xg = xg(�) andxr = xr(�). The principal component primary reflection
of the acoustic seismic wavefield generated by a compressional point source located at
xs and registered atxg is expressed in the zero-order (ZOr) ray approximation as given
by Cerveny and Jech (1982)

U(�; t) = UoW (t� � (�)): (2)

The above cited principal component primary reflection describes the particle displace-
ment into direction of the ray at the receiver pointG. In equation (2),W (t) represents
the analytic point-source wavelet, i.e. this is a complex valued function whose the
imaginary part is the Hilbert transform of the real source wavelet, and the real part is
the wavelet itself. At the receiver positionxg within the surface�o, the seismic trace
is the superposition of the principal component primary reflections.

By taking into account the ray wavefield approximation within the planey = 0,
the reflection traveltime function� = � (x) with x = (x; z), is proved by Cerveny and
Jech (1982) to satisfy the eikonal equation

r� � r� = 1=v2(x); (3)

where the traveltime� (x) is a continuous in-plane function. It is also proved that the
amplitude factorUo satisfies the ZOr transport equation

2r� � rUo + Uor2� = 0: (4)

At this time, we need to introduce the fundamentalin-plane slowness vector

p = (p; q) =
t

v(x)
= r� (x); (5)
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where the unitary vectort =
dx

ds
is tangent to the ray trajectory, ands is the arclength

of ray. In equation (??) the componentsp andq are the so-called horizontal and vertical
slowness, respectively, which are related with each other by the expression

p = �
s

1

v2
� q2: (6)

The in-plane ray equations are alternatively described by, whered� = vds,

dx

d�
= p; (7)

dz

d�
= q; (8)

dp

d�
= �@lnv(x; z)

@x
; (9)

dq

d�
= �@lnv(x; z)

@z
: (10)

In the 2.5-D case the slowness vector is orthogonal to the axisy, remaining in-plane.
This means that the initial slowness vectorpo = (po; qo) is reduced to the two compo-
nents

po =
sin �o
vo

; qo =
cos�o
vo

; (11)

where�o andvo are, respectively, the start angle of the ray and the velocity at the
source pointS.

The solution of the transport equation (4) is the ZOr ray approximation of the
principal component of the reflection wavefield given by Cerveny and Jech (1982),
that corresponds to the displacement observed at the receiver pointG after to have
been reflected at the reflection pointR in �r, computed by

Uo =
RcA
L : (12)

In the formula (12),Rc is the geometrical-optics reflection coefficient at the reflection
pointR as presented by Bleistein (1984). The factorA corresponds to the total loss
energy dues to transmissions across all interfaces along the whole ray. In general this
factor is considered to be equal one, what means that there is no loss. Finally, the
amplitude factorL is the so-called divergence factor orgeometrical spreading, whose
expression will be given in the next section.

The Paraxial Ray Approximation

The paraxial ray approximation is based on the a priori knowledge of a ray trajectory
also known as thecentral ray, which in our example is the ray that starts at the source
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pointS(�), reaches the reflector at the reflection pointR(�), and arrives at the receiver
pointG(�). Thus, theparaxial ray is so defined as each ray that starts in the vicinity
of S, at the pointS 0(�0), reflects at the pointR0(�0) nearby the pointR, and reaches the
receiver pointG0(�0) in the vicinity ofG.

By applying the concept of paraxial ray, Cerveny and Jech (1982) derived the
paraxial eikonal equation having as solution the two-point paraxial reflection travel-
time from pointS 0 at x0s = xs(�0) to the pointG0 at x0g = xg(�0) in the vicinity of
pointsS andG, respectively. An equivalent second-order approximation solution was
found also by Ursin (1982) and by Bortfeld (1989). At this paper we write using the
same formalism as given by Schleicher et al. (1993), that is tailored for the in-plane
ray trajectory, given by

�R(s; g) = �R(s = 0; g = 0) + pGg � pSs� sNSGg +
1

2
NG
S s

2 +
1

2
NS
Gg

2: (13)

In the equation (13) the function�R(s = 0; g = 0) denotes the traveltime along the
central raySG, whiles andg are linear distances in the axesx1s andx1g, the so-called
paraxial distances. These distances are obtained using the following two-steps: (1) At
the source/receiver pointsS 0 andG0, the vectorsx0s andx0g are orthogonally projected
onto the respective axisx1s andx1g; (2) the distancess andg are then defined as having
origin at the source/receiver pointsS andG with end at the projections ofx0s andx0g,
respectively. In the other hand, the so-calledlocal horizontal slownesspS andpG are
obtained as the orthogonal projections of the initial and final in-plane slowness vectors
at source/receiver pointsS andG onto the respective axesx1s andx1g.

The quantitiesNG
S andNS

G are second-derivatives of the traveltime function (13)
with respect to the source and receiver coordinates evaluated ats = 0 andg = 0,
respectively. The other quantityNSG is the second-order mixed-derivative of the same
traveltime function (13) evaluated ats = g = 0.

In the next section of this paper we will perform the 2.5-D true-amplutide migration
by using a proper weighted modified diffraction stack. For that, we define for all points
of parameters� on the earth surface for each pointM within a specified volume of the
macro-velocity model, the diffraction in-plane traveltime curve

�D(�) = � (S;M) + � (M;G) = �S + �G: (14)

Following Schleicher et al. (1993), we will refer to this curve as theHuygens travel-
time. The traveltimes�S and�G denote, respectively, the traveltimes from the source
pointS to some arbitrary pointM within the model, and fromM to the receiver point
G.

For obtaining the Huygens paraxial traveltime at a reflection point within�r in the
vicinity of R at xr = xr(�), M = R0 in (14), with position vectorx0r = xr(�0), we
consider two equations of type (13) for the paraxial traveltime fromS 0 toR0

� (s; r) = � (s = 0; r = 0)� pSs+ prr � sNSRr +
1

2
NR
S s

2 +
1

2
NS
Rr

2: (15)
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And fromR0 toG0 we have

� (r; g) = � (r = 0; g = 0)� prr + pGg � rNRGg +
1

2
NG
R r

2 +
1

2
NR
G g

2: (16)

In the both formulas (15) and (16), the quantityr is the distance betweenxr and the
orthogonal projection ofx0r onto the axisx1r tangent to the reflector at pointR. The
local horizontal slownesspr is built by the projection of the in-plane slowness vector
atxr onto thex1r axis.

The quantitiesNSR andNRG are second order mixed-derivatives respective the
traveltimes (15) and (16) calculated ats = g = r = 0, while NR

S andNS
R are the

second-order derivatives of the traveltime function (15) on relation tos and r, re-
spectively. Finally, the quantitiesNG

R andNR
G are the second-order derivatives of the

traveltime function (16) on relation tor andg.

Following the authors Bleistein (1986), Liner (1991), Stockwell (1995) and Han-
itzsch (1997), the expression of the geometrical spreading factor, when tailored for the
2.5-D ZOr ray approximation of the seismic wavefield is given by

L2:5 =

p
cos�S cos�G

vs

p
�S + �Gq
jN j

� exp[�i�
2
�]: (17)

In the above formula (17), we have that�S and�G are the start and emergence angles
of the central ray measured on relation to the normal at S and G on the earth surface,
while vs is the velocity at the source pointS. The termN in the denominator is given
by the ratio

N =
NSRNGR

NS
R +NG

R

: (18)

In the other side, we have that�S and�G are two quantities related with each branch
of the central raySR andRG, and calculated by the expressions

�S =
Z R

S
v(x)ds and �G =

Z G

R
v(x)ds: (19)

The exponential term in (17) represents the phase shitf dues to the caustics along each
branch of the central ray.

The 2.5-D spreading factorL2:5 can be expressed then as function of the 2-D
spreading factorL2, given by

L2:5 = L2F2:5; F2:5 =
p
�S + �G; (20)

whereF2:5 is called the out-of-plane factor.

Finally, the 2.5-D amplitude factor of the ZOr ray approximation is then rewrited
as

(Uo)2:5 =
RcA
L2:5

: (21)
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As result of the expression (20), the amplitude factor (21) can be alternatively written
as

(Uo)2:5 =
(Uo)2
F2:5

: (22)

In the expression (22) we have that(Uo)2 denotes the two-dimensional wavefield am-
plitude calculated in-plane. An equivalent relationship between 2-D and 2.5-D am-
plitude factors was found by Bleistein (1986). This means that if we know the 2-D
amplitude factor, we need only to divide it by the out-of-plane factorF2:5 in order to
obtain the 2.5-D amplitude.

THE 2.5-D RAY MIGRATION THEORY

By assumings andg are linear function of�, we can write

s = (s = 0) + �S� and g = (g = 0) + �G�; (23)

where�S =
@s

@�
and�G =

@g

@�
, which are calculated at� = 0. In the same way, we

considerr is a linear function of� so that

r = (r = 0) + �r�; where �r =
@r

@�
: (24)

As a consequence of the above relations (23) and (24), we can express the travel-
time functions�R = �R(�) and�D = �D(�;R). Moreover, we can define the function
�F (�;R) = �D(�;R) � �R(�).

Starting from the result obtained in the Appendix by equation (A-9), we have the
2.5-D modified diffraction stack integral given by the stationary phase solution

V̂ (R;!) �
p�i!p

2�

Z
A
d�[w(�;R)]2:5[Û(�; !)]2:5exp[i!�D(�;R)]: (25)

By considering that the observed wavefield is in-plane confined then we can insert the
2.5-D ZOr approximation of the primary reflection into the integral (25) rewriting

V̂ (R;!) �
p�i!p

2�

Z
A
d�[w(�;R)]2:5

RcA
L2:5

Ŵ (!)exp[i!�F (�;R)]: (26)

The above integral (26) that represents the 2.5-D diffraction stack migration opera-
tor, is one more time calculated approximately by the stationary phase method. At this
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time we apply the stationary phase condition
@�F
@�
j�=�� = 0. Thus we have

V̂ (R;!) � Ŵ (!)
[w(��; R)]2:5q
� 00F (�

�; R)

� RcA
L2:5

exp[i!�F (�
�; R)� i�

4
(1�Sgn(� 00F (�

�; R))]: (27)

Where� 00F (�
�; R) =

@2�F (�;R)

@�2

���
�=��

is the second-order derivative of the Taylor ex-

pansion

�F (�;R) = �F (�
�; R) +

1

2
� 00F (�

�; R)(� � ��)2: (28)

After some algebric manipulations involving the formulas (13), (15) and (16) we can
express the second-order order derivative term by

� 00F =
(�SNSR + �GNGR)2

(NS
R +NG

R )
: (29)

The Weight Function

The 2.5-D weight function[w(�;M)]2:5 for an arbitrary pointM inside the macrov-
elocity model in the integral operator (26) is defined such that the high frequency
solution approximation of the diffraction stack integral, for a critical point�� within
the migration apperture A, equals the spectrum of the true-amplitude migration source
wavelet multiplied with a phase shift operator, that represents the difference between
the in-plane reflection and diffraction traveltime curves at the stationary point. Thus
we have

V̂ (M;!) �
(
RcAŴ (!)exp[i!�F (��;M)] : �� 2 A
0 : �� 62 A

(30)

The 2.5-D weight function is then defined as

w(��;M)2:5 = L2:5

q
� 00F (�

�;M)exp[
i�

4
(1� Sgn(� 00F (�

�;M))]: (31)

After replacing the appropriate definition ofL2 as given by (17) and including the
evaluation of� 00F from the expression (29) we have the result

w(��;M)2:5 = F2:5

p
cos�S cos�G

vs

0@�SNSM + �GNGMq
(NSM )(NGM )

1A exp
�i�
2

[�1 + �2]:(32)

The above weight function is to be applied to the amplitude of the 2.5-D seismic
data, that is generated when we have a situation of a point source lined up to a set of
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receivers in the plane�2 = 0, by considering a seismic model where the velocity field
does not depend on the second coordinate�2. If the chosen pointM inside the model
coincides with a real reflection pointR and� = ��, the result of applying the difrac-
tion stack migration operator (26) to the seismic data is proportional to the reflection
coefficient, and if it is put into the pointR we have the so-called true amplitude depth
migrated reflection data.

In case of special configurations we can apply the weight function (32) as follow:
(1) Common-offset:�G=�S = 1 for S 6= G; (2) Common-shot:�S = 0 and�G = 1
when the source pointS is fixed; (3) Common-receiver:�S = 1 and�G = 0 when
the receiver pointG is fixed; and (4) Zero-offset:�S = �G = 1 for S � G, and then
�S = �G, �1 = �2 and�S = �G. In the common-midpoint configuration the weight
function is not appropriated, because in this case the stationary phase solution is not
valid.

EXAMPLES

In order to make a numerical analysis of the true-amplitude migration method, we
have generated a set of synthetic seismic traces by using the ray theoretical modeling
algorithm SEIS88. For that we use a seismic model constituted of two layers separated
by a horizontal plane interface, with velocities 5 and 6 Km/s. The seismic line is
considered to be coincident with thex axis. For calculating the data a common-shot
configuration was considered with a point source positioned atx = 0:1 Km in the
seismic line, while the 75 receivers are in-line within the interval 1.0 e 4.7 Km. The
point-source wavelet is represented by a Gabor function with frequency of 40 Hz. The
seismic trace has a sample interval of 1.0 ms. The free surface is not considered in
this example. In order to simulate a noise enviroment, we add to the amplitude at
each sample of the seismic traces a random number with a rate of 0.2 of the maximum
amplitude observed in the seismic data as we can see in Figure (1).

The result of our expriment is observed by the Figures 2, 3, 4 and 5. In contrast
with the test presented by Urban and Cruz (1998) in this volume, as a consequence
of the addition of noise in the input data, the seismic migration algorithm does not
correctly recover the original source wavelet. But even in noise enviroment we can see
that the obtained seismic image represents the true reflector very good. The reflection
coefficient determination comes to the samething when we have both the real and
imaginary parts oscilating around and near the exact value. In case of noise in the data
it is not so easy to determine where the so-called boundary effects begin to influence
the migrated data.
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Figure 1: Synthetic seismic data used as input in the 2.5-D true-amplitude depth mi-
gration algorithm, with the signal to noise ratio equals to 1:0.2.

CONCLUSION

From the results obtained in this paper, we can affirm that the presented 2.5-D weight
function when applied to the 2.5-D seismic data is abble to recover the reflection co-
eficeint even in noise enviroment. The 2.5-D true-amplitude migration algorithm is
stable, when we have that small perturbation in the input data provides only slight
deviation in the output migrated data.

APPENDIX A

The true-amplitude is here defined as the analytic primaryP�wave reflection multi-
plied byL and shifted tot = 0. Thus, we can write

UTA(t) = LU(�; t+ �R(�)) = RcAW (t): (A-1)

Following Schleicher et al. (1993) the weighted modified diffraction stack is con-
sidered the appropriated method to perform a true-amplitude migration. For each point
M in the macro-velocity model and all points(�1; �2) in the migration apertureA,
the diffraction stacks are then performed by summation along the Huygens surface
�D(�1; �2;M) for all pointsM into a region of the model. The true-amplitude mi-
gration is reached by summation using certainly Huygens surface and derived weight
function, such that the stack output is proportional to the desired reflection coefficient.



105

0.5 1 1.5 2 2.4
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Distance (Km)

D
ep

th
 (

K
m

)

Figure 2: Migrated seismic data, real part.

Mathematically this operation is described by the two-dimensional integral

V (M; t) =
�1
2�

Z Z
A
d�1d�2w(�;M)� _U(�; t+ �D(�;M)); (A-2)

where the symbol(�) means the first derivative with respect to time, andw(�;M) is the
weight function used to stack.

By transforming the expression (A-2) into the frequency domain

V̂ (M;!) =
�i!
2�

Z Z
A
d�1d�2w(�;M)Û(�)exp[i!�D(�;M)]: (A-3)

In order to specialize the 3-D formula (A-3) to the 2.5-D geometry, we start con-
sideringM = R, i.e. the reflection point itself. The migration integral needs solving
asymptoticaly by the stationary phase method as found in Bleistein (1984) on relation
to the coordinate�2, by making use of the stationary condition as showed in Bleistein
et al. (1987)

@�D
@�2

=
@� (S(�); R)

@�2
+
@� (R;G(�))

@�2

���
�o

= 0; (A-4)

which can be expressed through the identity

@

@�2

h
� (S;M) + � (M;G)

i���
�o

= p2s + p2g
���
�o

= 0: (A-5)

By applying the in-plane ray conditionp2 = p2o into the 3-D ray equation as given by
Cerveny and Jech (1982) we have

x2s = �sp2s
���
�o

and x2g = �gp2g
���
�o

; (A-6)
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Figure 3: Migrated seismic data, imaginary part.

with �s and�g calculated along the ray pathsSM andMG, respectively. By consid-
ering the 2.5-D geometry,x2s = x2g = �2, we have finally the result

p2s + p2g
���
�o

=
� 1

�s
+

1

�g

����
�o

�2 = 0: (A-7)

From equation (A-7) we conclude that the stationary phase condition is�2 = 0. For
completeness of our asymptotic analysis, we calculate the second derivative of the
phase at�2 = 0

@2

@�22

h
� (S;R) + � (R;G)

i���
�2=0

=
1

�oS
+

1

�oG
: (A-8)

Being�oS and�oG the ray parameters for the ray branchesRS andRG, when calculated
on the earth surface�o.

The above results yield the stationary phase solution

V̂ (R;!) �
p�i!p

2�

Z
A
d�w(�;R)

 
1

�oS
+

1

�oG

!�1=2
Û (�; !)exp[i!�D(�;R)]: (A-9)

As a consequence of the fact thatÛ (�; !) is the in-plane observed point source wave-
field amplitude factor, the 2.5-D weight function is defined as

[w(�;R)]2:5 = w(�;R)

 
1

�oS
+

1

�oG

!�1=2
; (A-10)

wherew(�;R) is the in-plane version of the three dimensional weight function of the
3-D modified diffraction stack Schleicher et al. (1993).
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Figure 4: Reflection coefficients picked from the reflector position in the real part of
the migrated data. The interrupted line corresponds to the exact value of the reflection
coefficient.
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Figure 5: Reflection coefficients picked from the reflector position in the imaginary
part of the migrated data. The interrupted line corresponds to the exact value of the
reflection coefficient.
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