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ABSTRACT

For a fixed, central ray in anisotropic elastic or acoustic media, traveltime moveouts
of corresponding rays in its viciniy can be well described in terms of a certain number
of parameters that refer to the central ray only. The determination of these parame-
ters out of multicoverage data leads to very powerful stacking algorithms to produce,
e.g., simulated zero-offset sections, very often with better quality as the ones obtained
by conventional common mid-point stack. Assuming two-dimensional propagation,
so that sources and receivers are distributed on a single seismic line, the multipara-
metric traveltime expressions depend on three parameters. By a combination of just
introduced spectral projected gradients and global optimization methods, a new algo-
rithm has been obtained to directly extract the traveltime parameters out of coherency
analysis applied directly on the data. Numerical results obtained in synthetic examples
show an excellent performance of the method, both in accuracy and computational ef-
fort. The results obtained so far indicate that the algorithm may be a feasible option
to solve the corresponding, harder, full three-dimensional problem.

INTRODUCTION

In the framework of zero-order ray theory, traveltimes of rays in the vicinity (paraxial)
of a fixed (central) ray can be described by a certain number of parameters which refer
only to the central ray. The approximations are correct up to the second order of the
distances between the paraxial and central ray at the corresponding initial and end
points. They are, thus, valid independently of any seismic configuration.

Assuming the central ray to be the primary zero-offset or normal reflection ray,
the number of parameters (emergence angles and curvatures of certain wavefronts)
are three and eight, for two- and thre-dimensional propagation, respectively. Deter-
mination of these parameters by coherency analysis directly applied to multicoverage
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data leads to very powerful stacking algorithms to produce, e.g., simulated zero-offset
sections of superior quality.

For two-dimensional propagation, in which sources and receivers are distributed on
a single seismic line, simple multiparametric traveltime expressions are available. The
parameters are the emergence angle of the normal ray and the wavefront curvatures
of the normal and normal-incident-point waves. All these quantities are defined at the
central point, where the normal, primary reflection ray hits the measurement surface.
For a given selection of the three parameters that refer to a fixed normal ray, each
of the traveltime expressions explicitly describes the moveout of any reflection ray in
terms of its arbitrary source and receiver locations with respect to the central point
of the normal ray. Assuming different geometries of acquisition, the three-parameter
formula can be reduced to different ones depending on two or one parameter.

To actually find the traveltime parameters by means of coherency analysis applied
to the multicoverage data in a a stable and feasible way is the crucial problem that
has to be solved to enable the application of the multiparameter stacking. In this work
we present a new method, based on global optimization techniques, for the estimation
of the parameters for two-dimensional multicoverage data. It uses a recently intro-
duced nonmonotone, spectral projected gradient (SPG) optimization algorithm (Birgin
et al., 1997). The method uses classical projected gradient together with nonmonotone
line-search and spectral-steplength. The method is applied to find local maxima of a
multiparametric semblance function. A further combination with global optimization
techniques is then applied to obtain the corresponding global maximum.

Although the proposed strategy can be applied to find the three parameters simul-
taneously, we present in this paper only the results for the application of the method
to the data originated by a particular arrangement of sources and receivers, namely the
common shot configuration. In this situation, the number of parameters is reduced to
two, which simplifies the search for the global maximum.

Note that the full solution can be obtained if another experiment is carried out. Us-
ing the data originated from the common mid-point configuration, we find the optimal
value of a single quantitie, which is a combination of the original parameters. Col-
lecting the results coming from both configurations, it is possible to find the optimal
values of the three parameters.

HYPERBOLIC TRAVELTIME EXPANSION

We assume the subsurface to be described by a 2-D laterally inhomogeneous isotropic
layered earth model, for which body-wave traveltimes can be adequately approximated
by zero-order ray theory (see, e.g., Cerven´y, 1985). We suppose that a dense multi-
coverage seismic experiment has been carried out on a single seismic line along a
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horizontalx-axis. This implies that each point of the seismic line is surrounded by a
set of shot-receiver pairs (within a certain range of offsets). In practice, this implicitly
requires some trace interpolation to replace eventual missing traces.

As shown in Figure 1, we consider a fixed target reflector� in depth, as well as a
fixedcentralpointX0 on the seismic line, considered to be the location of a coincident
source- and -receiver pairS0 = G0 = X0. Also shown in Figure 1 is the two-way nor-
mal, zero-offset reflection ray,X0R0X), called from now on thecentral ray. It hits the
reflector at pointR0, known as the normal-incident-point (NIP). For a source- and re-
ceiver pair(S;G) in the vicinity of the central point, we consider the primary reflected
ray SRG relative to the same reflector�. We use the horizontal coordinatesx0, xS
andxG to specify the location of the central pointX0, the sourceS and the receiverG.
It is convenient to introduce the midpoint and half-offset coordinates

xm =
xG + xS

2
� x0 and h =

xG � xS
2

(1)

The simplest traveltime approximation for a two-dimensional primary reflected
ray in the vicinity of a zero-offset, central ray, is probably the classicalhyperbolic
traveltime (see, e.g., Cerven´y, 1985; Ursin, 1982; Schleicher et al., 1993). For our
purposes, we adopt the hyperbolic traveltime expression as described in Tygel et al.
(1997), namely

T 2(xm; h; �0;KN ;KNIP ) =

 
t0 +

2xm sin�0
v0

!2

+
2t0 cos2 �0

v0
(KN x2m+KNIP h2) ;

(2)
wheret0 is the zero-offset traveltime and�0 is the emergence angle the zero-offset ray
make with the surface normal at the central point (see Figure 1). The quantitiesKN

andKNIP are the wavefront curvatures of thenormalN - andnormal-incident-point
NIP -waves, respectively, both measured at the central point.

TheN - andNIP - waves are fictitious eigenwaves introduced by Hubral (1983)
for the analysis of the actual propagation of the zero-offset ray, as well as for its cor-
responding paraxial rays. Their wavefront curvatures at the central point carry impor-
tant information about the velocity model in which the wave propagation takes place.
TheN -wave can be conceptually visualized such that its wavefront at zero time co-
incides with the reflector, and travels to the surface with half the medium velocity. It
arrives at the central point at the same time as the zero-offset ray. TheNIP -wave can
be visualized as starting as a point source at the reflection point (R0) of the zero-offset
reflection ray and progresses upwards with half velocity of the medium. It also arrives
at the central point at the same time as the zero-offset ray.
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FORMULATION OF THE PROBLEM

The data obtained by a multicoverage seismic experiment performed on the seismic
line consists of a multitude of seismic tracesU(xm; h; t) corresponding to source-
receiver pairs located by varying coordinate pairs(xm; h) and recording time0 < t <
T . The basic problem we have to solve is the following:

Consider a dense grid of points(x0; t0), wherex0 locates a central pointX0 on
the seismic line andt0 is the zero-offset traveltime. For each central pointX0

let the medium velocityv0 = v(x0) be known. From the given multicoverage
data, determine, for any given point(x0; t0) and velocityv0, the corresponding
parameters�0, KN andKNIP .

The general approach to solve this problem is to apply a multiparameter coherency
analysis (semblance) to the data, using the traveltime formula (2) to a number of
tracesU(xm; h; t) in the vicinity of the central rayX0 and for a suitable time win-
dow around the timet0. The desired values of sought-for parameters will be the ones
for which one achieves maximum coherence when applying the traveltime (2) to the
data.

From the above considerations, it should be expected, right from the start, that
points(x0; t0) in the vicinity of a zero-offset primary reflection arrival should produce,
for the correct parameters, a large coherency measure. On the other hand, one is ex-
pected to find small coherency at points where no such arrival occurs. Assigning at
each point(x0; t0) its corresponding semblance, one obtains a seismic sectionsem-
blancegram(Gelchinsky at al., 1987), which can be seen as a simulated or stacked
zero-offset section that pertains to the multicoverage data. In the same way, similar
sections can be obtained using the parameters�0, KN andKNIP , respectively.

OPTIMIZATION TECHNIQUE

For each pair (x0; t0) the objective is to find the global maximum of thesemblance
function, which depends on the parameters�0, KN andKNIP . These parameters
are restricted to the ranges��=2 < �0 < �=2 and�1 < KN ;KNIP < 1. For
simplicity, we shall omit the dependency onx0 andt0 in all functions described below.

Given the seismic tracesU(xm; h; t), and the vector of parametersP = (�0;KN ;KNIP ),
the semblance functionS is given by

S =
[
P
U(xm; h; T (P ))]2

M
P
[U(xm; h; T (P ))]2

(3)
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whereT (xm; h; P ) is given by equation (2),M is the total number of traces, and the
summing is performed over all traces.

In order to obtain a differentiable function which allows us to use a gradient-type
method for the optimization of the semblance functionS, we apply a differentiable
interpolation strategy, namelyB-splines, for the computation ofU(xm; h; t) at t =
T (P ).

The strategy for computing the global maximum of the semblance function is as
follows. We begin by running a local method, theSpectral Projected Gradient(SPG)
method from different initial points. As usual, these type of methods guarantee con-
vergence to stationary (minima, maxima or saddle) points only. For this reason, we
define a mesh of initial points and take as the global maximum, the obtained solution
with maximum value.

The SPG method takes in each iteration the spectral scaled projected gradient as
a feasible ascent direction, and performes a nonmonotone line search to guarantee
sufficient increase of the semblance function. The idea of the nonmonotone strategy
is to look for a point which gives a greater function value with respect to the last
ten function values obtained. The main advantage of this method is that it uses first-
order (gradients) information only, which reduces both the computational efforts and
storage requirements. For complete details about the SPG method, we refer the reader
to Birgin et al. (1997).

COMMON SHOT CONFIGURATION

As it is common practice in seismic processing, we will make use of a specialsource-
receiver gather, namely particular arrangement of source-receiver pairs, according to
certain pre-assigned configuration. In theCommon-Shotconfiguration (CS), the cen-
tral point is a fixed source and the receivers vary. The location of the source-receiver
pairs in the CS configuration are specified in midpoint and half-offset coordinates by
the conditionxm = h. Substituting into the traveltime formula (2) yields the CS trav-
eltime formula

t2CS(h) =

 
t0 +

2h sin�0
v0

!2

+
2h2t0 cos2 �0

v0
(KN +KNIP ) : (4)

By restricting the traces to conform to the particular arrangement of sources and
receivers, the CS configuration, one can accordingly reduce the number of parameters
in the corresponding traveltime expression. In the CS configuration, we easily see that
the search is restricted to the two parameters�0 andKN +KNIP (see formula (4)).

The strategy of using particular configurations to reduce the number of parameters
to be estimated has advantages and disadvantages. The main advantage is the some-
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times significant reduction of computational effort. As a disadvantage, less redundancy
is made use for, as many traces that do not conform to the selected configuration have
to left out.

In the next section, we will make use of the CS traveltimes as a strategy to derive
the parameters�0 andKN +KNIP from the multicoverage data.

NUMERICAL RESULTS

We consider the model of a single smooth reflector between two homogeneous half-
spaces (see Figure 2). The constant velocities above and below the reflector arev1 =2.5
km/s andv2 =2.6 km/s, respectively. The input data for our experiment is a colection
of 61 common-shot seismic sections with 30 traces each one, where the source (x0) is
in the range from 0 km to 0.6 km and the time window is [0.4s,9.11s]. To simulate real
situations we have added a colored noise of 20%. This was obtained uppon the con-
volution of white noise with the wavelet used to construct the seismograms. Figure 3
shows the corresponding seismic section for the casex0 =0.35 km.

Figure 4 shows the maximum semblance function value obtained for each pair(x0; t0).
These values were computed using the global optimization technique described in the
previous sections. Note the very good agreement with the real zero-offset seismic
section depicted in Figure 5, generated by forward modeling.

All the experiments were run in an ORIGIN2000, with FOUR processors R1000
of 195MHz, 4MB of cache memory, and 1024MB of RAM memory. We used the lan-
guage C++ with the MIPSpro Compilers: version 7.20 and the optimization compiler
option -Ofast. In spite of the great number of runnings of the SPG algorithm (� 2:106),
the total CPU time used under the mentioned computer environment did not exceed 20
minutes.

FINAL REMARKS

The results obtained here are encouraging. We have made a first attempt to apply
optimization techniques to the traveltime multiparameter estimation. Experiments for
the estimation of all parameters without using particular configurations are needed to
confirm the efficiency of our strategy. This is subject of current research.
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Figure 1: Physical interpretation of the hyperbolic traveltime formula parameters.
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Figure 2: Model and acquisition geometry.
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Figure 3: Seismic section with 20% of colored noise.

Figure 4: Semblancegram.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.5

0.6

0.7

0.8

Distance (km)

Tim
e (s

)

Figure 5: Simulated zero-offset section.


