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ABSTRACT

Seismic wave propagation in 1-D randomly layered media is characterized by frequency-
dependent anisotropy due to multiple scattering at 1-D inhomogeneities. An analytical
description of the transmissivity and reflectivity in such media is given by the gener-
alized O'Doherty-Anstey formulas, which are valid in the entire frequency domain and
also for oblique incidence. They can be regarded as a combination and generalization
of the Backus averaging ((Backus, 1962)), which is valid in the static limit only, and
the theory of (O'Doherty and Anstey, 1971), which applies for all frequencies, yet for
vertical incidence only. The transmission of obliquely incident plane waves propagating
through at thick 1-D randomly layered stack embedded between two identical homoge-
neous halfspaces is studied. However, unlike in previous works, the restriction to the
individual layers being isotropic is now being dropped, and intrinsic transverse isotropy
is taken into consideration. Thus, two different kinds of anisotropy must be combined:
[A] frequency-dependent anisotropy due to thin layering and [B] frequency-independent
intrinsic anisotropy. To compare the significance of both effects for the transmissivity of
seismic waves is a subject of the investigations. Analytical results are presented for dif-
ferent degrees of intrinsic anisotropy superimposing the effect of small-scale fluctuations
of the medium parameters on wave propagation. The emphasis is thereby laid on the
frequency-dependent shear-wave splitting.

INTRODUCTION

Multiple scattering at small-scale 1-D inhomogeneities causes an exponential attenua-
tion of seismic waves, which strongly depends on the frequency and the angle of inci-
dence and influences velocity dispersion and shearwave splitting. (Shapiro and Hubral,
1996) and (Shapiro et al., 1994) provided an analytical description of theqP , qSV , and
SH-waves propagating in randomly multilayered media. Their so-called ' generalized
O' Doherty-Anstey formulas' can be used for both deterministically and statistically spec-
ified stratifications. Their method not only holds for the entire frequency range, but also
for oblique incidence. However, a restriction is the assumption that the fluctuations of
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the medium parameters are small compared to their average values. In the generalized
O' Doherty-Anstey theory, the individual layers are assumed isotropic. The observed
frequency-dependent anisotropic behaviour of the transmissivity in such media is exclu-
sively caused by wavefield scattering due to thin multilayering. In this work, however,
intrinsic anisotropy of the individual layers is also taken into account. We show that,
unlike the anisotropy caused by multilayering, the intrinsic anisotropy does not depend
on the frequency of the transmitted wave.

THE MODEL

In the case of transversely isotropic multilayering five elastic parameters are necessary
to describe the elastic wavefield completely. In addition to the homogeneousP - and
S-wave velocities�0 and�0 we use three ' anisotropy parameters'�; �; and�. Two of
them,� and�, are identical with the well-known Thomsen parameters" and
 ((Thom-
sen, 1993)), respectively, and the third one,�, has been designed for reasons of simplicity.
If we consider a horizontally stratified medium with thez-axis being the symmetry axis
(VTI-medium),� and� describe the deviations of theqP=qSV -wave behaviour from the
isotropic case as well as wave conversion effects, whereas� is a measure for the differ-
ence between the verticalS-wave velocity�0 and the horizontal velocity of theSH-wave.
Our model consists of a thick 1-D inhomogeneous, elastic medium (e.g. a randomly
multilayered stack) embedded between two identical homogeneous halfspaces character-
izing a homogeneous, transversely isotropic reference medium with vertical symmetry
axis. The actual parameters in the 1-D inhomogeneous medium may vary inz-direction
in a random manner. However, the restriction applies that the parameter fluctuations and
the anisotropy parameters must be small. All parameters are constant in the horizontal
(x-y-) plane at any givenz. They-axis is normal to the incidence plane. From the up-
permost halfspace a plane S-wave enters the inhomogeneous medium and is split into
two shear-wave phases, theqSV -wave being polarized in the incidence plane, and the
SH-wave perpendicular to it along they-axis. Our aim is to evolve analytical formulas
for the angle- and frequency-dependent shear-wave splitting in such media.

THEORY

In the following, the procedure that leads us to the analytical formulas for the time-
harmonic transmissivities, from which the phase velocities and attenuation coefficients
can be extracted, is briefly summarized. The strategy of solution is described in detail in
(Shapiro and Hubral, 1996). Since there is no interaction between theqP=qSV -wavefield
and theSH-wavefield, they can be studied separately. However, for both the same strat-
egy can be applied: In the 1-D inhomogeneous medium the wavefield can be described
by a vector~f (z)exp [ i! (px�t )] that satisfies the following first-order differential matrix
equation:

@

@z
~f (z) = QTI(z)~f(z) : (1)
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QTI(z) is a matrix that carries all information about the physical properties of the 1-D
inhomogeneous medium. It contains the depth-dependent velocities�(z); �(z), density
%(z), and anisotropy parameters�(z); �(z); �(z). In the inhomogeneous region these pa-
rameters can be separated into averaged parts, e.g.�0 = h�true(z)i and appropriate fluc-
tuating parts, e.g."�(z) in the following manner:�true(z) = �0(1 + "�(z)) : This proce-
dure can be applied for all medium parameters. The constant quantities,�0; �0; �0; �0; �0
and%0 , characterize a homogeneous reference medium obtained by averaging the depth-
dependent medium parameters. Their fluctuating parts,"�(z); ::: are a measure for the
deviation of the ' real' medium from the averaged reference medium at any given depth
z. Due to their definitions the mean value of these medium fluctuations is zero. As a
consequence of the separation of the physical medium parameters into a homogeneous
and a fluctuating part, eq. (1) can be rewritten in a new form:

@

@z
~f (z) = QTI

0
~f(z) +QTI

� (z) ~f(z) (2)

QTI
0 is made up of the constant averaged quantities. It is, therefore, independent of

z and represents the homogeneous transversely isotropic reference medium. The fluc-
tuation matricesQTI

� (z) consist of known combinations of terms with fluctuations of
first-order and higher-order powers. By analogy with (Shapiro and Hubral, 1996), the
time-harmonic transmissivity, which describes the response in the lowermost halfspace
to a plane wave incident in the upper halfspace, can be expressed as follows:

TSV;SH = exp(i( SV;SH(p; !)L + !px � !t)� 
SV;SH(p; !)L) : (3)

! is the angular frequency,p the horizontal slowness, andL the thickness of the inhomo-
geneous part of the medium along the symmetry(z)-axis. SV;SH , the so-called 'vertical
phase increment' , denotes the real part of the vertical component of the wave vector, and

SV;SH is the attenuation coefficient. The results for the vertical phase increments read:

 SV;SH = �SV;SH + ! ASV;SH + !2
Z 1

0
d� B0

SV;SH(�; �SV;SH ) ; (4)

The quantities�SV;SH , which are proportional to!, are the eigenvalues of the corre-
sponding matricesQTI

0 ; they represent the contribution of the intrinsic anisotropy of
the background.ASV;SH contain variances and crossvariances of the medium fluctua-
tions, describing the low-frequency Backus correction due to thin layering. And finally,
B0
SV;SH are made up of known combinations of the auto- and crosscorrelation functions of

the medium fluctuations; the integral expressions characterize the frequency-dependent
effect due to thin layering. The phase velocitiesVSV;SH(p; !) can be obtained from the
vertical phase increments by:

VSV;SH(�; !) =
1s

p2 +
 2
SV;SH(p; !)

!2

: (5)
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RESULTS AND CONCLUSIONS

Results are illustrated for the frequency-dependent shear-wave splitting at different an-
gles of incidence for media with small and large intrinsic anisotropy. The shear-wave
splitting is defined by:S(!; p) = (VSV (!; p)� VSH (!; p))=�0 : We consider a medium
with an exponential correlation function. The parameters are given in the caption. The
shear-wave splitting is illustrated for media without (Fig.1a) and with (Fig.1b) intrin-
sic anisotropy. A comparison of both cases shows that in the presence of intrinsic
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Figure 1: Frequency-dependent shear-wave splitting for� = 10o; 20o; 30o;�0 =
4000m=s; �0 = 2325m=s; %0 = 2500kg=m3; l = 5m;��;�;% = 0:1; left picture: no
intrinsic anisotropy, right picture: strong intrinsic anisotropy (�0 = �0 = �0 = 0:1)

anisotropy shear-wave splitting occurs even for high frequencies, whereas without in-
trinsic anisotropy it tends to zero in the high-frequency limit regardless of the incidence
angle. The frequency-dependence is thereby not changed. From this we can conclude that
the contribution of the intrinsic anisotropy is a shift of the shear-wave splitting to larger
values by an amount that is determined by the magnitude of the intrinsic anisotropy. This
shift depends only on the frequency if the intrinsic anisotropy is subject to fluctuations
and becomes larger with increasing angle of incidence.
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