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ABSTRACT

The proposed new Kirchhoff-type true-amplitude migration to zero-offset (MZO) for 2.5-
D common-offset reflections in 2-D laterally inhomogeneous layered isotropic earth mod-
els does not depend on the reflector curvature. It provides a transformation of a common-
offset seismic section to a simulated zero-offset section in which both the kinematic
and main dynamic effects are correctly accounted for. The process transforms primary
common-offset reflections from arbitrary curved interfaces into their corresponding zero-
offset reflections automatically replacing the geometrical-spreading factor. In analogy to
a weighted Kirchhoff migration scheme, the stacking curve and weight function can be
computed by dynamic ray tracing in the macro-velocity model which is supposed to be
available. In addition, it is shown that an MZO stretches the seismic source pulse by the
cosine of the reflection angle of the original offset reflections. The proposed approach
quantitatively extends the previous MZO or dip moveout (DMO) schemes to the 2.5-D
situation.

INTRODUCTION

The importance of preserving seismic reflection amplitudes in seismic processing, imag-
ing, and inversion is widely recognized. As a result, amplitude-preserving imaging meth-
ods have been developed that encompass a whole spectrum of seismic imaging proce-
dures. One of the aims of the efforts to preserve amplitudes is the extraction and inver-
sion of angle-dependent reflection coefficients at selected points on a target reflector. The
best domain to extract this information appears to be the seismic image after pre-stack
migration (Beydoun et al., 1993), e.g., from common-offset sections.

Pre-stack common-offset migration in laterally inhomogeneous media cannot be re-
placed by standard post-stack migration, as the stacking process, although improving
the signal-to-noise ratio, destroys the quantitative amplitude information contained in the
data. Moreover, it is cheaper to perform a zero-offset migration than a common-offset
migration in an amplitude-preserving way. For that reason, a process is desirable that

1email: js@ime.unicamp.br

33



34

transforms a seismic common-offset section into its corresponding simulated zero-offset
section whereby amplitudes (i.e., geometrical-spreading factors) are correctly accounted
for. The true-amplitude Kirchhoff MZO described in this paper is a seismic reflection-
imaging process that is exactly designed to achieve this aim.

Of course, a true-amplitude Kirchhoff-type MZO must be designed in such a way
that a subsequent true-amplitude Kirchhoff zero-offset migration leads to the same re-
sult as a direct pre-stack common-offset migration applied to the original data. We
recall that a true-amplitude Kirchhoff migration is defined to remove the geometrical-
spreading loss from seismic reflection amplitudes (Newman, 1985; Bleistein, 1987; Bort-
feld and Kiehn, 1992; Schleicher et al., 1993; Sun and Gajewski, 1997). As a conse-
quence, true-amplitude migration outputs can be used as a measure of the local (angle-
dependent) reflection coefficients. The two-step process consisting of true-amplitude
Kirchhoff MZO and zero-offset migration works as follows. The MZO operation auto-
matically replaces the geometrical-spreading factors of the common-offset reflections by
the ones pertaining to the corresponding zero-offset reflections, keeping all other fac-
tors affecting the common-offset reflection amplitudes (in particular the reflection or
transmission coefficients) unchanged. The zero-offset migration thereafter eliminates
the zero-offset geometrical-spreading in the migration output.

For constant-velocity media, MZO can be decomposed into a two-step process, con-
sisting of first applying a normal-moveout correction (NMO) followed by a dip-moveout
correction (DMO). As the latter operation does not depend on the constant velocity and
is easily implemented, this decomposition is, for the purpose of finding the correct ve-
locity, routinely incorporated into the seismic processing sequence. It remains a good
approximation as long as the velocity variation is not large. Forel and Gardner (1988)
have shown that it is advantageous to invert this order, i.e., to first carry out the velocity-
independent DMO before performing a conventional velocity analysis using a slightly
modified NMO. In inhomogeneous media with stronger lateral variations of the velocity,
however, neither of the above decompositions is properly defined. MZO has to be carried
out as a one-step procedure.

MZO and DMO for constant-velocity media are widely investigated and used, lead-
ing to valuable results even for slightly varying velocities. As pointed out by Hale (1984),
one great advantage of these methods is that a single 2-D operation suffices to kinemati-
cally describe a full 3-D constant-velocity DMO or MZO, thus saving a lot of computer
time. This advantage, however, turns out to be a drawback when the dynamic problem is
addressed. Although a full 3-D true-amplitude MZO for laterally inhomogeneous media
can be derived along the lines of Tygel et al. (1996), this turns out not to be a stable
process. Because of the above indicated collapse of dimensions, the ray-theory weights
become zero when the out-of-plane medium variations vanish.

As an alternative to the full 3-D description, we have considered here the corre-
sponding 2.5-D problem. In this way, we obtain a substantial extension of the constant-
velocity case while avoiding the indicated difficulties. As it is now common use in ex-
ploration seismics, the term “2.5-D” means that we consider 3-D wave propagation in a
2-D (isotropic, laterally inhomogeneous, layered) earth model. There exist no medium
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variations in the out-of-planey-direction. In particular, all reflectors can be specified by
in-plane(x; z)-curves (Figure 1). Finally, all point sources, assumed to omnidirection-
ally emit identical pulses, and all receivers, assumed to have identical characteristics, are
distributed along thex-axis so that only in-plane propagation needs to be considered. For
the 2.5-D problem, the full 3-D geometrical-spreading factor of an in-plane ray can be
written as a product of in-plane and out-of-plane factors (Bleistein, 1986). Both quanti-
ties can be computed using 2-D dynamic ray tracing (Cerven´y, 1987).

For a constant-velocity medium, we analytically subdivide the derived true-amplitude
Kirchhoff MZO into NMO plus DMO. The resulting true-amplitude DMO transforma-
tion is then compared to some previously described time-domain smear-stack DMOs. As
the principal interest of this paper is in the dynamics of MZO and DMO, we confine this
comparison to the ones that explicitly address the effects on amplitudes. For that reason,
several important papers on DMO, whose main emphasis are on kinematic aspects, are
left out. We have focused our attention on the Born-DMO of Bleistein (1990) and Liner
(1991) and the true-amplitude DMOs of Black et al. (1993) and of Fomel and Bleistein
(1996). The amplitude effects of constant-velocity MZO and DMO on reflections from
curved reflectors have been recently investigated by Bleistein and Cohen (1995), Goldin
and Fomel (1995), and Fomel and Bleistein (1996). Their results are quite similar to ours,
but obtained under the explicit use of the constant-velocity assumption.

A comprehensive analysis on true-amplitude, constant-velocity DMO has already
been given by Black et al. (1993) who derived true-amplitude DMO weights for the case
of primary reflections due to planar, dipping reflectors. Moreover, synthetic and field
data examples of the application of the above two-step common-offset migration strategy
have been provided in the same paper. The problem of a depth-dependent velocity has
been addressed more recently. Dietrich and Cohen (1993) derived the analytic expression
for the stacking curve in a medium with a constant vertical velocity gradient. They also
heuristically suggested a DMO weight function which, however, does not correctly take
into account the amplitude effect of the stacking process itself. Artley and Hale (1994)
extended constant-velocity DMO to the case of a velocity that may vary arbitrarily with
depth. Already in this case, ray tracing needs to be performed through a given veloc-
ity model to numerically compute the stacking curves. Their work only addresses the
kinematic aspects of v(z) DMO and does not contain any considerations on amplitudes.

This paper generalizes what has been done so far in the literature in two ways. It
(1) presents a 2.5-D true-amplitude Kirchhoff MZO that is designed to work for any 2-D
laterally inhomogeneous layered medium for which 3-D wave propagation can be ade-
quately described by zero-order ray theory and it (2) investigates its correctness, concern-
ing not only the kinematic but also the dynamic, i.e., true-amplitude, aspects of primary
reflections from arbitrarily curved reflectors. In analogy to a weighted Kirchhoff migra-
tion scheme, the stacking curve and weight function can be computed by dynamic ray
tracing in the available macro velocity model.

At first sight, it may seem that, once the macro-velocity model is sufficiently accu-
rate, it makes more sense to directly implement in one step a pre-stack true-amplitude
common-offset migration and not perform a true-amplitude MZO at all. However, even
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if the main idea is to obtain a full pre-stack depth-migrated image, it may still be advan-
tageous to perform the two-step procedure consisting of a true-amplitude MZO followed
by a zero-offset migration because (a) the spatial extent of an MZO stacking curve is
very limited in comparison to that of a pre-stack common-offset Kirchhoff migration
and (b) a subsequent true amplitude zero-offset migration needs only a simple weight
(Hubral et al., 1991; Schleicher et al., 1993). Moreover, the stack of all obtained sim-
ulated zero-offset sections will lead to a better stacked section than the conventional
process of constant-velocity NMO/DMO.

MZO, although not necessarily true-amplitude MZO, may also be considered for ve-
locity analysis. Because of the limited spatial extent of the MZO stacking curve, MZO
image gathers, which are often also called DMO gathers, are cheaper to produce than
conventional pre-stack-migration image gathers. They are, however, of similar practical
value to estimate velocity errors.

CONCLUSION

In this paper, we have formulated an approach to a true-amplitude migration to zero offset
(MZO) for 2.5-D in-plane reflections in 2-D laterally inhomogeneous media with curved
interfaces. Constructing true MZO amplitudes (in our sense) implies that in the simulated
zero-offset reflections the original geometrical-spreading factor of the common-offset
reflections is replaced by that of corresponding actual zero-offset reflections for the same
reflection points. This goal is achieved by a weighted one-fold single-stack integral in
the time domain along specific stacking curves. These turn out to coincide with the MZO
inplanats as defined by Hubral et al. (1996). Not relying on any property of the arbitrarily
curved reflectors to be imaged, the true amplitude weight function can be computed by
dynamic ray tracing performed along ray segments that link the zero-offset and common-
offset source and receiver points to certain points in the macro-velocity model. The
procedure closely parallels that of a pre-stack Kirchhoff-type common-offset migration,
where the rays from the sources to the receivers are connected by “diffraction points.”
It therefore makes sense to refer to the proposed MZO approach as a Kirchhoff-type, or
shortly, a Kirchhoff MZO.

Using standard asymptotic considerations, our analysis has shown how, irrespective
of the chosen weight, any single-stack MZO affects the amplitude of the resulting simu-
lated zero-offset reflections. The MZO output is seen to be proportional to the zero-offset
geometrical-spreading factor, while the proportionality factor is dependent on the reflec-
tor overburden only and not on the reflector dip and curvature. This important result
was crucial to the formulation of a true amplitude MZO weight function valid for curved
reflectors in inhomogeneous media. Note also that the proposed general true amplitude
Kirchhoff MZO for inhomogeneous media may not only be of use for the general 2.5-D
situation described here, but it may also help to find analytic expressions for stacking
curves and weight functions in simpler types of media, e.g., for a velocity distribution
that varies with depth only.



37

Analyzing the result of a Kirchhoff MZO in the vicinity of the desired zero-offset
reflection time, we found a simple and geometrically appealing formula for the pulse
stretch seismic reflections are subjected to when migrated from common-offset to zero
offset. It turned out that the factor describing the pulse stretch is just the cosine of the
reflection angle of the original common-offset reflections. Although this expression for
the pulse stretch was obtained from studying Kirchhoff MZO, it is common to any other
MZO method that is kinematically equivalent to the proposed approach.

The discussed theoretical features of 2.5-D true-amplitude Kirchhoff MZO have been
demonstrated with the help of two simple numerical examples. We have seen that the
amplitude recovery of a true-amplitude MZO is quite good. Note, however, that portions
that are insufficiently illuminated by the original common-offset experiments cannot be
expected to be correctly recovered in the simulated zero-offset sections.

Being designed a priori for 2-D laterally inhomogeneous velocity models, our ap-
proach differs from all MZO or DMO schemes proposed so far in the literature. To en-
able a comparison, we tailored our general formulas to the constant-velocity case. For the
purpose of comparing different MZO and DMO integral methods, we have also shown
how a two-fold smear-stack DMO integral is related to a one-fold single-stack Kirchhoff
MZO or DMO integral. We have seen that for a constant velocity, the proposed method is
kinematically equivalent to the known schemes. The constant-velocity form of the weight
function derived in this work differs somewhat. This is due to the slightly different con-
ceptions that other authors have of what a true amplitude MZO should achieve. The
closest relatives to the present MZO weight are the ones of Bleistein (1990) and Black et
al. (1993). Also Bleistein and Cohen (1995), Goldin and Fomel (1995), and Fomel and
Bleistein (1996) have similar results for a curved reflector overlain by a constant-velocity
medium.

We stress once more that this work generalizes the previous constant-velocity results
to laterally inhomogeneous media, which has been so far an open problem. We were
able to provide a substantial and natural extension of previously proposed schemes. We
finally remark that the present Kirchhoff MZO was obtained along the same lines as the
fairly general theory presented in Hubral et al. (1996) and Tygel et al. (1996), tailoring
it to the specific problem of a 2.5-D true amplitude MZO. Other true-amplitude imaging
problems, including other configuration transforms, may be tackled in a corresponding
manner.
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