
Wave Inversion Technology, Report No. 1, pages 77-??

Common-reflection-point stacking in laterally
inhomogeneous media

Hervé Perroud, P. Hubral and G. H¨ocht1

keywords:Imaging Stacking

ABSTRACT

An important seismic reflection-imaging process that is widely applied in practice in an
approximate form is the simulation of a zero-offset (ZO) section from a set of common-
offset (CO) sections. Rather than using the familiar common-mid-point (CMP) stack
(that suffers from reflection-point dispersal when the reflectors are dipping), one aims
now more and more to perform an accurate common-reflection-point (CRP) stack. In
the latter case, all primary CO reflections used for the simulation of a particular ZO
reflection are expected to have a common reflection point. The aims of this paper are
(a) to give some simple analytic formulae for these trajectories for the constant velocity
case, and (b) to extend them to a CRP stacking method for 2-D laterally inhomogeneous
media using only the near-surface velocity.

INTRODUCTION

CRP stacking is a widely investigated subject. Here we want to stress on a selective CRP
stack, which uses only those stacking trajectories in the seismic data domain that per-
tain to actual reflection points. In addition to considering this CRP stacking method in
2-D constant-velocity media, we also show how to construct a CRP stack section using
only the near-surface velocity. In the latter case, which can be looked upon as a brief
- and hopefully new - introduction to the common-reflection-element (CRE) method of
(Gelchinsky, 1988) or as a generalization of the CMP stacking method of (de Bazelaire,
1988), one obtains important wavefield attributes as part of the CRP stack. These at-
tributes can be used to derive the complete a priori unknown 2-D laterally inhomogeneous
macro-velocity model ((Hubral and Krey, 1980)).

CONSTANT-VELOCITY MEDIA

Let us consider Fig. 1, which consists of a curved dome-like subsurface reflector overlain
by a constant velocity medium (v = 2500m=s). Let us assume that different CO profiles
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have been acquired, and that the CO reflection-time curve from the subsurface reflector
as observed in each CO section [at the mid-pointXh between each shotS and receiver
G, both separated by the constant offset0 < 2h < 2Hmax] is plotted in a common
(t � x) domain, wheret denotes time. Only two CO travel-time curves, for the offset
2h = 0m and2h = 800m, are shown in Fig. 1 in that(t � x) domain. The primary
reflection positions of the subsurface reflector pointR(Xr; Zr) are the pointsPo(Xo; to)
andPh(Xh; th) on the ZO and CO travel-time curves, respectively. If pointPo is ZO
migrated to depth on its own, it provides the lower half-circle of radiusvto=2 centered
atXo. If point Ph on the other hand is CO migrated to depth on its own, it provides the
lower half-ellipse (with focal points atS andG) centered atXh. Both the circle and the
ellipse have to be tangent to the reflector at pointR.

Figure 1: Lower half: Dome-like
structure touched at pointR by the
ZO isochrone (half-circle with center
atXo) of Po.The rayXoRXo denotes
the ZO ray and the raySRG the CO
ray of offset2h. Both are specular rays
and are part of the rays of the CRP con-
figuration atXo that illuminates point
R.
Upper half: ZO reflection-time curve
with point Po and CO reflection-time
curve with point Ph. Both points
are connected by the MZO hyperbola
(solid line) that describes the location
of the CO reflections for pointR as a
function of the offset2h. The exten-
sion of the MZO hyperbola to thex-
axis is dotted.
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Figure 2: Isometric view of the 3-D
CRP trajectory forPo and its three 2-
D projections onto the planest = to,
h = 0, and�x = 0. The constant-
time contours pertain to all offsets2h
separated by25m steps.
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CRP trajectories

We can now make the following interesting observation in Fig. 1 concerning all CO
reflections from pointR in the(t�x)domain of offset2h: if the offset2h is continuously
reduced from the given value2h to 2h = 0, then pointPh moves or migrates towardsPo
on what we want to call the MZO hyperbola for pointR. This hyperbola is given by
the following equation (1a), wherev is the medium velocity and2rt = XoT denotes the
distance between the projectionXo of pointPo onto thex-axis and pointT :

t2 = (4=v2)�x2 + (8rt=v
2 + t2o=2rt)�x+ t2o (1a)

with �x(h) = X �Xo = rt
q
(h=rt)2 + 1 � rt (1b)

and 2rt = (v=2)(to= sin�) (1c)

PointT is the point where both the tangent to the ZO reflection-time curve atPo, and
the tangent to the subsurface reflector atR, intersect with t hex-axis. The parameter
� denotes the angle made by the ZO ray emerging atXo with the vertical. The MZO
hyperbola (1a) for pointR is displayed in Fig. 1 as a thick line passing through pointsPh
andPo.

If we consider the 3-D(t � x � h) seismic data domain (here given in form of a
continuous set of CO sections for0 < 2h < 2Hmax), eqs. (1) define together a spatial
curve in that domain. This spatial curve we call the CRP trajectory (Fig. 2) for the
reflection pointR of Fig. 1. The MZO hyperbola (1a) forR is therefore nothing but the
projectiont(�x) of the CRP trajectory into the(x� t) plane of any CO section, e.g. for
2h = 0. Fig. 2 also shows the projectionst(�x(h)) of eqs. (1) into the(t � h) plane
�x = 0 and the projection�x(h) into the(x� h) planet = to.

Since each point on the(x � h) plane defines one shot-receiver pair by itsx � h
coordinates, we call the CRP configuration all shot-receiver pairs with the coordinates
(Xs = Xo+�x�h;Xg = Xo+�x+h)with �x being given by eq. (1b) for0 < 2h <
2Hmax which illuminate pointR. For this all reflected rays pass through pointR.

CRP stack with selected CRP trajectories

Our purpose is now to stack only along CRP trajectories which pertain to actual reflection
points. Let us for simplicity neglect the conflicting dip problem and therefore assume
only one reflection point on the ZO isochrone. To identify this reflection point, we have
to perform a coherency analysis along each CRP trajectory computed for each point on
the ZO isochrone. The final stack for pointPo is then only performed along the CRP
trajectory with the greatest coherency value. The search parameter could be the angle
� of the ZO ray connectingXo with a point on the ZO isochrone (Fig. 1), which as a
result of this stack will then also be determined. We can surely admit more than one CRP
trajectory to contribute to the stack value atPo by specifying a threshold coherency value
rather than selecting only the highest.
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LATERALLY INHOMOGENEOUS VELOCITY

We shall now generalize the constant-velocity CRP stacking to a 2-D laterally inhomo-
geneous velocity medium with a constant near-surface velocityvo. Fig. 3 shows the same
target reflector as Fig. 1. It is now however overlain by two media with the constant
velocitiesvo = 2500m=s andv1 = 3000m=s.

True and auxiliary CRP experiments

In what follows, we have to clearly distinguish between concepts that have the attributes
“true” and “auxiliary”. They relate to either the true or auxiliary CRP experiment defined
below. All graphs referring to results obtained for both experiments are shown superim-
posed with solid or dotted curves, respectively. In the lower half of Fig. 3, we see e.g. the
true normal rayXoRXo. Its two-way time defines the reflection-timeto for the ZO reflec-
tion at pointPo. Fig. 3 also shows the true CO raySRG for a pair of pointsS andG that
belongs to the true CRP configuration where the reflection pointR is kept unchanged. If
its travel-timet = th is plotted at the midpointXh between the sourceS and the receiver
G as a function ofh and�x = Xh �Xo, one obtains the true CRP trajectory of Fig. 4
with its three projections. The traces collected by the true CRP configuration are part of
the true CRP experiment, where each shot is initiated att = 0. The(t� x) projection of
the true CRP trajectory is the curve passing through pointsPo andPh in the upper half of
Fig. 3.

Figure 3: Lower half: Dome-like
structure touched at pointR by the ZO
isochrone of pointPo. The rayXoRXo

denotes the ZO ray and the raySRG
the CO ray for the true CRP experi-
ment. PointR� is the auxiliary reflec-
tion point of pointR, i.e. the center of
curvature of a wavefront originating at
R and emerging atXo.
Upper half: ZO reflection-time curve
(2h = 0m) with point Po and
true (solid) and auxiliary (dotted) CO
reflection-time curves (2h = 800m)
with pointsPh andP �

h . Both points are
connected with pointPo by the(t� x)
projections of the true and auxiliary
3-D CRP trajectories for pointR and
R
�.
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The lower half of Fig. 3 also shows the so-called auxiliary reflection pointR� for the
true reflection pointR. PointR� is defined as the center of curvature of the “hypothetical
wavefront” that originates at pointR on the true reflector and emerges atXo. Fig. 3 also
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Figure 4: Superposition of two iso-
metric views (as in Fig. 2) of the
true (solid curves) and auxiliary (dot-
ted curves) 3-D CRP trajectories and
their 2-D projections forPo.
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shows the straight line fromXo to R�. This can obviously be looked upon as the ray
of an up-going hypothetical auxiliary wavefront originating at pointR� in the auxiliary
velocity medium defined by the constant velocityvo. The true and auxiliary wavefront
curvatures are the same atXo. Observe however that both hypothetical sources atR and
R� need to explode at different times if their wavefronts are expected to arrive at point
Xo simultaneously. If the hypothetical source in the true velocity model atR explodes
at t = 0, its counterpart hypothetical source (in the auxiliary velocity modelvo) atR�

should explode at� = to=2 � r=vo, wherer is the radius of wavefront curvature of both
emerging hypothetical waves atXo.

Let us now consider atR� (i.e. in the auxiliary velocity modelvo) an auxiliary reflec-
tor perpendicular toXoR

�. Let this be illuminated by the auxiliary CRP configuration
at Xo (Fig. 3) for pointR�. This includes the shot-receiver pairs(S�; G�) placed at
X�

s = Xo +�x� � h;X�
g = Xo +�x� + h, where

�x�(h) = r�t

q
(h=r�t )2 + 1 � r�t (2)

and 2r�t = XoT
� = r= sin�

with T � being the intersection point of the normal to the rayXoR
� at R� with the x-

axis.The auxiliary CRP experiment is now defined such that each sourceS� in the auxil-
iary CRP configuration is initiated att = 2� . The auxiliary CRP trajectory atXo = X�

o

for the auxiliary reflection pointR� is then given by eq. (2) and

(t� 2� )2 = (4=v2o)�x
�2 + (8r�t =v

2
o + (2r=vo)

2=2r�t )�x
� + (2r=vo)

2 (3)

We observe in Fig. 4 that, since in practice we are dealing with reflection time surfaces
and wavelets attached to them, the auxiliary CRP trajectory is a reasonable stacking tra-
jectory.

CRP stack with selected CRP trajectories

To explain the essential steps of the CRP stack in unknown laterally inhomogeneous
media, we reconsider Fig. 3. Since our purpose is to get a good approximation of the
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travel times also for large offsets, not only the angle� but also the radii of curvature
of the emerging hypothetical wavefront atXo (originating either atR in the true model
or atR� in the auxiliary model) should coincide. Unlike in the constant velocity case
where this radius of curvature equals the radius of the ZO isochrone, i.e.r = vto=2, it
is unknown in laterally inhomogeneous media and therefore becomes a second search
parameter. Performing e.g. a coherency analysis along the auxiliary CRP trajectories
determines the stacking trajectory as well as radius of curvaturer and emergence angle�
for each pointP0. These are the two most important and most stable wavefield attributes
that can be obtained in addition to the ZO reflection-timeto.

CONCLUSIONS

The accuracy with which a ZO simulation in laterally inhomogeneous media can be
achieved depends upon the velocity distribution above the reflectors. In fact the proposed
CRP stack result may even be better than other ZO simulation stacks for an inadequately
chosen velocity model. The proposed CRP stack is a selective stack, i.e. search para-
meters have to be found by coherency analysis, and enables us to derive the velocity
model.
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