Eigenwave based multiparameter traveltime expansions

Thilo Müller, Martin Tygel, Peter Hubral and Jörg Schleicher ${ }^{1}$
keywords: imaging traveltimes

Abstract

Three different 2-D traveltime approximations for rays in the vicinity of a fixed zero-offset ray are presented and analyzed. All traveltimes are given as three-parameter expansions involving the emergence angle of the zero-offset ray with respect to the surface normal, as well as two wavefront curvatures associated with the zero-offset ray, namely the normal wave and normal-incidence-point wave. A comparison of all three multiparameter traveltime expansions is carried out.

INTRODUCTION

Traveltimes of rays in the (paraxial) vicinity of a fixed (central) ray can be described by certain parameters which refer to the central ray only. The traveltime approximations directly obtained from paraxial ray theory are the parabolic and the hyperbolic expansions ((Schleicher et al., 1993)). An appealing alternative traveltime description, has been recently proposed by (Gelchinsky et al., 1997). In this new representation, the paraxial rays can be specified so as to focus at a certain point of the zero-offset ray or at an extension to this ray. For this reason, Gelchinsky's expression has been referred to as the multi-focus traveltime. In the second-order approximation the multi-focus traveltime agrees with its parabolic and hyperbolic counterparts. In this paper we provide simple derivations of all above mentioned formulas and examine their behaviour for a synthetic model.

THE TRAVELTIME EXPANSION FORMULAS

In the following, we refer to Figure 1.

[^0]Figure 1: Construction of the focusing wave. Shown is the normal ray from X_{0} to NIP. Also depicted are two of all possible paraxial rays ($S R G$ and $\overline{S R G}$) that intersect this central ray at a common focus point P. These set of rays defines a fictitious wave called the focusing wave that starts at X_{0} with the wavefront Σ_{S}, focuses at P, is reflected at the reflector Σ and emerges again at X_{0}, now with the
 wavefront Σ_{G}.

Parabolic and hyperbolic traveltimes

Following the formalism of (Bortfeld, 1989) tailored to the present two-dimensional propagation, the 2×2 propagator matrix

$$
T=\left(\begin{array}{ll}
A & B \tag{1}\\
C & D
\end{array}\right)
$$

describes a first-order relationship

$$
\left\{\begin{array}{l}
\Delta x_{G}=A \Delta x_{S}+B \Delta p_{S}, \tag{2}\\
\Delta p_{G}=C \Delta x_{S}+D \Delta p_{S},
\end{array}\right.
$$

where Δx_{S} and Δx_{G} are the source and receiver offsets of the paraxial ray with respect to the central ray. Δp_{S} and Δp_{G} denote the corresponding slowness projection differences of these rays onto the seismic line at the initial and end points, respectively. All these quantities are measured with respect to a fixed coordinate system attached to the tangent to the measurement surface at X_{0}. Using the fact that the down-going segment of the normal ray connecting X_{0} to NIP is the reverse ray to the up-going segment from NIP to X_{0} and along similar lines as in (Bortfeld, 1989), we can find the useful relations

$$
\begin{gather*}
A=D=\left(K_{N I P}+K_{N}\right) /\left(K_{N I P}-K_{N}\right), \tag{3}\\
B=\left(\cos ^{2} \beta_{0} / v_{0}\right)\left[2 /\left(K_{N I P}-K_{N}\right)\right], \tag{4}
\end{gather*}
$$

where v_{0} is the velocity at $X_{0}, K_{\text {NIP }}$ and K_{N} are the curvatures of the Eigenwaves NIPwave and N -wave ((Hubral, 1983)), respectively. The so-called symplecticity property of propagator matrices, namely the relation $A D-B C=1$, produces the remaining element C. Following (Bortfeld, 1989) or (Schleicher et al., 1993), we use midpoint and offset coordinates

$$
\begin{equation*}
x_{m}=\frac{\Delta x_{G}+\Delta x_{S}}{2}, \quad h=\frac{\Delta x_{G}-\Delta x_{S}}{2}, \tag{5}
\end{equation*}
$$

to find for the parabolic traveltime

$$
\begin{equation*}
t_{\text {par }}\left(x_{m}, h\right)=t_{0}+\left(2 \sin \beta_{0} / v_{0}\right) x_{m}+\left(\cos ^{2} \beta_{0} / v_{0}\right)\left(K_{N} x_{m}^{2}+K_{N I P} h^{2}\right) \tag{6}
\end{equation*}
$$

and for the hyperbolic traveltime

$$
\begin{equation*}
t_{h y p}^{2}\left(x_{m}, h\right)=\left[t_{0}+\left(2 \sin \beta_{0} / v_{0}\right) x_{m}\right]^{2}+\left(2 t_{0} \cos ^{2} \beta_{0} / v_{0}\right)\left(K_{N} x_{m}^{2}+K_{N I P} h^{2}\right) . \tag{7}
\end{equation*}
$$

In the above formulas, t_{0} denotes the two way traveltime along the central ray.

MULTI-FOCUS TRAVELTIME

For the computation of the multi-focus traveltime we consider the bundle of primary reflection rays that focus a fixed point P. As depicted in Figure 1, we imagine that all these rays describe a certain fictitious wave, which we call a focusing wave. For each of the focusing rays $S P R G$, the source and receiver offsets Δx_{S} and Δx_{G} are no longer independent but are related by the condition that it has to pass through the fixed point P. Our problem is to find a traveltime approximation for the rays paraxial to the central ray and satisfying this focusing condition. Let us now designate by Σ_{S} and Σ_{G} the initial and final wavefronts of the focusing wave, respectively. We approximate Σ_{S} by a circle, calling its curvature K_{S}. Similarly, we define the curvature K_{G} of the circular approximation of the wavefront Σ_{G} at X_{0}. Let S^{\prime} and G^{\prime} denote the points where the focusing ray $S P R G$ hits the initial and end wavefronts Σ_{S} and Σ_{G}, respectively. Let us now consider the paraxial ray $S P R G$ to be constituted by two ray segments. The first one connecting S to P and the second one describes the remaining path of the reflected ray from P to R and from there to G. We may then write the traveltimes t_{S} and t_{G} along these two ray segments $S P$ and $P R G$ in the form

$$
\begin{equation*}
t_{S}=t_{0 S}+\Delta t_{S}, \quad t_{G}=t_{0 G}+\Delta t_{G}, \tag{8}
\end{equation*}
$$

where $t_{0 S}$ and Δt_{S} are the traveltimes along the ray segments $S^{\prime} P$ and $S S^{\prime}$, respectively. The definitions of $t_{0 G}$ and Δt_{G} are analogous. Note that $t_{0 S}$ coincides with the traveltime along the central-ray segment from X_{0} to P and $t_{0 G}$ coincides with the sum of the traveltimes along the central-ray segment from P to $N I P$ and from NIP to X_{0}. Approximating the ray segments $S S^{\prime}$ and $G^{\prime} G$ by straight lines, we find, using simple geometrical arguments

$$
\begin{align*}
\Delta t_{S} & =\frac{1}{K_{S} v_{0}}\left[\sqrt{1+2 K_{S} \sin \beta_{0} \Delta x_{S}+\Delta x_{S}^{2} K_{S}^{2}}-1\right] \tag{9}\\
\Delta t_{G} & =\frac{1}{K_{G} v_{0}}\left[\sqrt{1+2 K_{G} \sin \beta_{0} \Delta x_{G}+\Delta x_{G}^{2} K_{G}^{2}}-1\right] . \tag{10}
\end{align*}
$$

Our problem reduces, thus, to the determination of the curvatures K_{S} or K_{G}. For that matter, we find it convenient to draw the line normal to the central ray at point P and consider it as an auxiliary interface. We also set a local coordinate system at P to locate
ray points and slowness projections which refer to rays arriving to and leaving from this auxiliary interface. We may now define the two auxiliary propagator matrices

$$
T_{1}=\left(\begin{array}{cc}
A_{1} & B_{1} \tag{11}\\
C_{1} & D_{1}
\end{array}\right), \quad T_{2}=\left(\begin{array}{cc}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right)
$$

which correspond to the two (central) ray segments from X_{0} to P and from P to X_{0} being reflected at $N I P$, respectively. For the two segments $S P$ and $P R G$ of the paraxial ray $S P R G$ (see Figure 1), the two matrices T_{1} and T_{2} set up the first-order relationships

$$
\begin{align*}
0 & =A_{1} \Delta x_{S}+B_{1} \Delta p_{S}, \tag{12}\\
\Delta p & =C_{1} \Delta x_{S}+D_{1} \Delta p_{S} \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
& \Delta x_{G}=0+B_{2} \Delta p, \tag{14}\\
& \Delta p_{G}=0+D_{2} \Delta p . \tag{15}
\end{align*}
$$

Note that the focusing condition at point P has been incorporated in the above equation systems by imposing the ray offsets of both segments $S P$ and $S R G$ at P to vanish and their slowness projections at P to be equal (denoted by Δp). Using simple algebra on the above equations provides a relationship between the source and receiver offsets for a focusing ray, namely

$$
\begin{equation*}
\Delta x_{G}=-\left(B_{2} / B_{1}\right) \Delta x_{S} \tag{16}
\end{equation*}
$$

The traveltimes t_{1} and t_{2}, along the rays $S P$ and $P R G$, can be written following (Bortfeld, 1989) and (Hubral, 1983) as

$$
\begin{align*}
& t_{1}=t_{0 S}+\frac{\sin \beta_{0}}{v} \Delta x_{S}+\frac{\cos ^{2} \beta_{0} K_{S}}{2 v}\left(\Delta x_{S}\right)^{2} \tag{17}\\
& t_{2}=t_{0 G}+\frac{\sin \beta_{0}}{v} \Delta x_{G}+\frac{\cos ^{2} \beta_{0} K_{G}}{2 v}\left(\Delta x_{G}\right)^{2}
\end{align*}
$$

where $t_{0 S}$ and $t_{0 G}$ are the traveltimes along the respective central rays and

$$
\begin{equation*}
K_{S}=\frac{A_{1}}{B_{1}} \frac{v}{\cos ^{2} \beta_{0}}, \quad K_{G}=\frac{D_{2}}{B_{2}} \frac{v}{\cos ^{2} \beta_{0}}, \tag{18}
\end{equation*}
$$

are the wavefront curvatures of the fictitious focusing wave at the initial point S and end point G, respectively. To determine the quantities A_{1} / B_{1} and D_{2} / B_{2}, we make use of the chain rule of propagator matrices $T=T_{2} T_{1}$, as well as the symplecticity relations $A_{i} D_{i}-B_{i} C_{i}=1,(i=1,2)$. After some algebraic manipulation of the above equations, we find the relations $K_{S}=\left(A+B_{2} / B_{1}\right) / B$ and $K_{G}=\left(A+B_{1} / B_{2}\right) / B$. Together with the focusing condition, as well as the representations (3) and (4) of A and B in terms of K_{N} and $K_{N I P}$, we obtain the final result

$$
\begin{equation*}
K_{S}=\frac{1}{1-\gamma}\left(K_{N}-\gamma K_{N I P}\right) \quad \text { and } \quad K_{G}=\frac{1}{1+\gamma}\left(K_{N}+\gamma K_{N I P}\right), \tag{19}
\end{equation*}
$$

Figure 2: The upper part shows the traveltime surface in the midpoint-half-offset domain as computed for the velocity structure depicted in the lower part.
where

$$
\begin{equation*}
\gamma=\left(\Delta x_{G}-\Delta x_{S}\right) /\left(\Delta x_{G}+\Delta x_{S}\right) \tag{20}
\end{equation*}
$$

is the focusing parameter of (Gelchinsky et al., 1997). Now, putting all intermediate results together, we come up with the multi-focus formula

$$
\begin{equation*}
t_{m u l t i}=t_{S}+t_{G} \tag{21}
\end{equation*}
$$

inserting the relationships (8), (9), (10), (19) and (20).

NUMERICAL EXPERIMENTS

In order to illustrate the presented traveltime approximations, we have chosen a synthetic 2D-model, where a dome-like structure is overlain by a smoothly curved interface as shown in Figure 2. Layer velocities are assumed to be constant, where $v_{1}=2300 \mathrm{~m} / \mathrm{s}$ and $v_{2}=2800 \mathrm{~m} / \mathrm{s}$ correspond to the first and second layer, respectively. The reflection response of the dome structure has been calculated by a ray tracing algorithm. The corresponding traveltime surface in dependence of midpoint and half-offset coordinates, x and h, respectively, is displayed in Figure 2 as well.

For a fixed midpoint coordinate $x=-455 \mathrm{~m}$ the traveltime approximations (given in equations (6), (7) and (21)) are calculated for the reflected wave field from the domelike reflector. Therefore the angle of incidence β_{0} of the zero offset ray, as well as the curvatures $K_{N I P}$ and K_{N} of the two eigenwaves need to be known. For the case of a known velocity model, simple geometrical considerations yield these parameters. In the present case these parameter are: $\beta_{0}=33.3^{\circ}, K_{N I P}=2.06 \cdot 10^{-4} 1 / m$ and $K_{N}=$

Figure 3: The exact traveltime curve of Figure 2 is compared to the three traveltime approximations discussed in the text, as computed for an arbitrarily chosen midpoint.
$5.43 \cdot 10^{-5} 1 / m$. The resulting traveltime surfaces are given in Figure 3. In order to make comparison with the exact traveltimes visual, 2D-slices of the traveltime surfaces for constant half-offsets $h=0 \mathrm{~m}, 500 \mathrm{~m}, 1000 \mathrm{~m}, 2000 \mathrm{~m}$ are depicted (see Figure 4).

For the zero-offset ($h=0 \mathrm{~m}$) case it can be seen that all three traveltime approximations fit very good to the exact curve. Even away from the chosen midpoint $(x=-455 \mathrm{~m})$ the results are good. For intermediate half-offset ($h=500 \mathrm{~m}, 1000 \mathrm{~m}$) the approximations are still very good for the hyperbolic and the multi-focus representation. The parabolic approximation is good at the chosen midpoint but deviates from the exact curve for distant midpoint coordinates. For larger offset $(h=2000 \mathrm{~m})$ all three traveltime representations deviate from the exact traveltime response. However, the multi-focus traveltime approximation gives still a good fit on the branch for positive midpoints.

CONCLUSION

Second- and higher-order traveltime expansions have been of great use for seismic processing for a long time. For CMP data, the one-parameter, hyperbolic NMO-traveltime is still routinely used for velocity analysis, stacking and inversion.

Alternatively, using a full multi-coverage data set along a seismic line, three-parameter, second-order traveltime expansions can be used. In this paper, we have compared the parabolic and hyperbolic traveltimes derived from paraxial ray theory (see, e.g., (Bortfeld, 1989); (Schleicher et al., 1993)) with the multi-focus traveltime of (Gelchinsky et al., 1997). For this purpose, we have reformulated the three approximations in terms of the same three parameters, namely the emergence angle of the normal ray, as well as the wavefront curvatures of the N - and NIP- eigenwaves introduced by (Hubral, 1983).

For various tested examples, the hyperbolic and multi-focus approximations gave, as expected for seismic models consistently better results than the parabolic traveltime.

Figure 4: Shown are 2D cross-cuts for constant half-offsets of the four traveltime surfaces of Fig. 3. Displayed are the exact traveltime (solid line), the multi-focus traveltime (dotted line), the hyperbolic traveltime (dashed line) and the parabolic traveltime (dashdotted line).

REFERENCES

Bortfeld, R., 1989, Geometrical ray theory: Rays and traveltimes in seismic systems (second-order approximation of the traveltimes): Geophysics, 54, 342-349.

Gelchinsky, B., Berkovitch, A., and Keydar, S., 1997, Multifocusing homeomorphic imaging: Part 1. basic concepts and formulas: Karlsruhe workshop on amplitudepreserving seismic reflection imaging, Geophysical Institute Karlsruhe, Special Course on Homeomorphic Imaging, February, 1997 in Seeheim, Germany.

Hubral, P., 1983, Computing true-amplitude reflections in a laterally inhomogeneous earth: Geophysics, 48, 1051-1062.

Schleicher, J., Tygel, M., and Hubral, P., 1993, Parabolic and hyperbolic paraxial twopoint traveltimes in 3d media: Geophysical Prospecting, 41, 495-513.

Tygel, M., Müller, T., Hubral, P., and Schleicher, J., 1997, Eigenwave based multiparameter traveltime expansions: 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1770-1773.

PUBLICATIONS

Detailed derivations of all presented traveltime expansion were published in (Tygel et al., 1997).

[^0]: ${ }^{1}$ email: Thilo.Mueller@physik.uni-karlsruhe.de

