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ABSTRACT

Based on an already made examination of a number of 2D methods we choose to inves-
tigate the applicability of an FD eikonal solver to 3D problems. The properties that we
focus on comprise not only accuracy but also memory consumption and - very important
for large problems - computational time. A gradient model and a two-layers model serve
as test cases and results are compared to results from the graph method. The comparison
shows that the already in 2D notable gap in terms of computational time between the FD
eikonal solver and the graph method is much bigger in 3D. Further, the accuracy of the
FD eikonal solver is good. The only drawback with respect to the method is the in 3D
smaller maximum velocity contrast that can be handled.

INTRODUCTION

The share of 3D problems in today's applied seismics is growing fast. This is due to
rising computational power on the one hand and generally higher expressiveness of 3D
data sets in comparison to 2D ones on the other hand. Consequently, we extended our
investigations on 2D travel time computation as presented by (Leidenfrost et al., 1996)
to 3D.

Despite of faster CPUs and growing storage capacities 3D problems are still a chal-
lenge mainly because of the sheer amount of data that has to be handled. As an illustra-
tion, consider the Marmousi data set (Versteeg and Grau, 1991) sampledwathyrid
spacing givingr36 x 300 data points or aboux8 MB (assuming 4-byte-floats). Extrud-
ing the flat model into a box with the second horizontal edge length matching the depth
would yield a data set of abot0 MB! Please note that this is only the memory required
for holding the input data, the computed travel times fill another array of the same size.

METHOD SELECTION

Consequently, for a 3D travel time calculation algorithm it is not sufficient to be only
fast and accurate. In fact, it is also worth examining a method's capabilities of working
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the data in portions to save core memory and/or to divide the whole task into several
independent threads which can then be distributed among a number of machines, e.g.,
using the MPI-protocol (Uni, 1995)

When reviewing the methods investigated by (Leidenfrost et al., 1996) with respect
to their applicability to 3D problems, one should take into account the aforementioned
qualities. The methods can be divided into two groups: One containing methods which
follow a rigid scheme in which each point is timed exactly once and the other group
containing more flexible methods that take into account the model structure. The FD
eikonal solvers both in Cartesian (Vidale, 1988, 1990) and in polar (Leidenfrost et al.,
1996) coordinates belong to the former group, while the latter consists of an extended and
parallelized version of Vidale's algorithm (Podvin and Lecomte, 1991), the graph method
of (Moser, 1991) in an improved and accelerated version by (Klimes and Kvasnicka,
1994) and wavefront construction (Vinje et al., 1993) as implemented by (Ettrich and
Gajewski, 1995).

As a consequence of their rigid calculation scheme, the first group's methods can
relative easily be divided into several tasks. Further, the model can be portioned such that
only the region where the calculation actually takes place must be held in core memory.
However, the, e.g., in (Vidale, 1988) described restrictions, i.e., velocity contrasts must
not exceedl : /2, intensify to a maximum contrast df : /3/v/2 ~ 1.22 in 3D.
Finally, the FD eikonal solvers promise to be comparably fast as well in 3D as they are
in 2D, although the algorithms in 2D and 3D differ in many aspects. The methods of the
second group can neither be (easily) threaded nor are they well suited for holding only
parts of the model or time array in core memory. On the other hand, they do not have
any restrictions concerning model complexity, which makes them interesting mainly for
complicated subsurface structures.

RESULTS

As in 3D much weight has to be put on speed and economy in terms of memory require-
ments, we here investigate the FD eikonal solver as described in (Vidale, 1990) in our
own implementation. We compare it against one method of the other group, the graph
method as published by (Klimes and Kvasnicka, 1994), as it has proven to be reliable and
because it contains an error estimation for the calculated travel times.

Two 3D models serve as test cases, both consistinglok 101 x 101 samples with
a grid spacing of 0 m in each direction, thus giving a cube with an edge lengthlah.
The first model is a gradient model of the fornjz) = v(0)+b-z,v(0) = 2km/s,b = 1,
z [km], i.e., a velocity of2 km/s at the top and km/s at the model bottom. The second
is a two-layers model with a horizontal interfacerat 310 m and velocities); = 3000
m/s above and; = 3600 m/s below the interface. In both cases, the source is located at
position(0,0,0).

The FD eikonal solver is with3.7 s CPU time (taken as u-time from the time com-
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mand's output) about two orders of magnitude faster than the graph method. Accuracy is
also quite excellent. The absolute value of the maximum relative error to the respective
analytical solution of the FD eikonal solver is for both models slightly ali®ee But

this is restricted to a very limited region near the source and is due to the rather small
initialization zone oB x 3 x 3 grid points around the source. The average relative error
of 0.03%, however, indicates that the method is generally very accurate. Although in the
models used here the average error of the FD eikonal solver is smaller than the one of the
graph method, the former is expected to be outperformed by the latter in terms of accu-
racy when switching to more complex models with stronger velocity contrasts, where the
eikonal solver's algorithm breaks down and replacement formulas have to be used. All
numbers were taken on a Pentiufi3 MHz machine.
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