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ABSTRACT

Optimal electromagnetic wave-propagation velocities and subsurface images for ground-
penetrating radar (GPR) data can be specified by using a new imaging method. This
implies in principle nothing else but time- or depth-migrating the radar time-domain
reflection data by continuously changing the constant migration velocity. Rather than
time-migrating the unmigrated GPR section we, however, propose to remigrate the al-
ready time-migrated section by a new one-step remigration operator. This allows us to
create many time-migrated images for different constant migration velocities. In this way,
the computation time for the time-migration process is very much reduced. Considering
time-migrated sections, one observes that time-migrated reflector images “propagate”
when the constant migration velocity is continuously changed. For this “propagation”
there exists a wave-equation-type partial-differential equation (PDE). With the proposed
scheme time-migrated sections can thus be looked upon as snapshots depicted for a cer-
tain migration velocity. The time-migrated reflector images in the snapshots consequently
behave like “waves”, which are called image-waves (Hubral et al., 1996). The concept
of seismic image-waves thus helps very much to understand the remigration and veloc-
ity determination process. This is applied to a real GPR-data example acquired in a
concrete-body environment within which a steel-cable frame is buried. It will be shown
that by the proposed method one is able to perform a quick migrated–image scan in order
to find a reliable migration velocity leading to the best time-migrated image.

INTRODUCTION

Seismic data processing methods have been successfully applied to Ground-Penetrating
Radar (GPR) data by various authors (Maiyala, 1992; Fisher et al., 1992a,b, 1994). It
is possible to treat GPR data for the purpose of subsurface imaging like seismic data
when the geological environments are of low attenuation loss or unconductive. This is
generally the case for GPR frequencies in the range(0:1 � 1:0)109 Hz, see Davis et al.
(1989). In a high resistive geological environment (� = 0) the electromagnetic wave
propagation can therefore be assumed to dominate the conduction. For that matter one

1email: bi23@rz.uni-karlsruhe.de

85



86

can treat radar wave propagation similar to acoustic wave propagation. One can also
use various seismic methods to process the radar data, such as wave-equation migration.
It will be shown in the description of the method that one can in fact approximate the
electromagnetic (EM) radar-wave propagation, by a scalar wave propagation if certain
requirements are fulfilled. Radar waves then propagate in

a medium with the propagation velocity

v =
1p
��
; (1)

where� and� are the electric permittivity and the magnetic permeability, respectively.

Wave-equation migration is one of the most important processing steps, either for
seismic or GPR data, because it can be viewed as solving the imaging problem by “mov-
ing the reflected/scattered energy from the surface back to the respective subsurface re-
flecting/scattering points ” thus providing their subsurface depth-migrated image. The
work of Fisher et al. (1992b) pioneers the application of migration to single-channel
GPR profiles. It successfully applies reverse time migration to GPR data, thus allowing
for a high-resolution interpretation of a stratigraphic soil sequence over a complicated
fluvial environment. A successful wave-equation migration requires, however, the prop-
agation velocity above the subsurface reflectors of interest. For near zero-offset reflection
data this is difficult to obtain. Moreover the accuracy requirements for the velocity are
also quite different for depth migration or time migration. A higher accuracy is required
for the depth migration and a smaller one for the time migration. This makes the latter
process more attractive in seismic and GPR imaging even though depth migration (with
a very good migration velocity) is certainly the more desirable task to be solved. It is,
therefore, a principal task in reflection imaging to find a time-migration algorithm, which
permits improving the (possibly wrong) propagation velocity in an easy and efficient way.
Such kind of imaging procedure is offered and discussed.

The imaging process required to construct from a given time-migrated zero-offset
section other ones for a continuum of migration velocities is subsequently referred to as
“remigration”. This term generalizes the terms residual or cascaded migration (Rothman
et al., 1985; Larner and Beasley, 1987) or velocity continuation (Fomel, 1994; Goldin,
1990). By a remigration time-migrated images for updated migration velocities are ob-
tained. This is achieved by applying a migration operator to an already time-migrated
section rather than to the unmigrated zero-offset data. Only the two-dimensional case is
subsequently considered.

DESCRIPTION OF THE METHOD

In this work we demonstrate the usefulness of seismic image waves (Hubral et al., 1996)
to perform an optimal time-migration imaging procedure on the GPR data. The proce-
dure involves nothing else but to “propagate” (or velocity-continue) reflector/scatterer
images in the time-migrated section by constantly changing the migration velocity. This
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change is, however, implicitly done by the remigration equation given below. Thus we
can very quickly establish the (most) correctly time-migrated image, and its migration ve-
locity. Throughout the work we only consider the time-migration process and recall that
a time-migration image differs from a depth-migration image only by a simple velocity-
dependent vertical depth-to-time scaling operation.

Useful solutions for radar signals can be found by considering the equation (Ward
and Hohmann, 1989; Born and Wolf, 1980)

r2p = ��
@p

@t
+ ��

@2p

@t2
; (2)

which can be derived from Maxwell's equations for the case of a 2-D homogeneous
isotropic medium. The constants�, � and� are the electric permittivity, magnetic perme-
ability, and conductivity of the medium, respectively. The above equation (2) is obtained
after decomposing the electromagnetic field into uncoupled electric and magnetic vector
components. This is possible as we work with media that are homogeneous with re-
spect to the propagation velocity. In the above casep(x; z; t) describes either the electric
or magnetic vector, i.e.,p = [px; py; pz ]T . As we are interested only in one arbitrary
component, we denote this withp(x; z; t). The first term on the right side of (2) rep-
resents conduction of charge. It causes attenuation of the electric-magnetic field. The
second term describes the displacement of the charge caused by the propagating electro-
magnetic field. Equation (2) leads for small values of� to the same eikonal equation and
rays as the scalar wave equation

@2p

@x2
+
@2p

@z2
=

1

v2
@2p

@t2
; (3)

for which � = 0 and wherev is the radar-propagation velocity given byv =
1p
��

[see

Eq. (1)].

REMIGRATION EQUATION

With the remigration equation one solves the following initial-value problem (Mann and
Jaya, 1997), generalized to 3-D case,

p(x; y; t; v0) ! p(x; y; t; v) ; v0 < v; (4)

involving the PDE (Fomel, 1994; Hubral et al., 1996; Schleicher et al., 1997; Mann and
Jaya, 1997).

@2

@v@t
p(x; y; t; v) + vt ~r2p(x; y; t; v) = 0: (5)

wherep denotes a scalar variable as e.g., pressure or any component of the electromag-
netic wavefield (see equation 3).~r2 corresponds to@

2

@x2
for 2-D case and~r2 to @2

@x2
+ @2

@y2

for 3-D case.



88

The initial value condition also allows for

p(x; y; t; v0 = 0) = p0(x0; y0; t0); (6)

wherep0(x0; y0; t0) is the ZO or CMP-stacked section. The initial-value problem (5) and
(6) can be solved by using some finite-difference schemes as recently showed by Mann
and Jaya (1997) or by spectral theory (Jaya et al., 1996).
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Figure 1: Zero-offset radar time section. The distance between two adjacent zero-offset
traces is 0.02 meter. The sample rate is 0.039 ns.

CONSTANT-VELOCITY SCAN

Only by solving for one operator equation (5) one has as the result a sequence of time-
migrated panels for many migration velocities. The only task of the interpreter is then
to pick the best focused (i.e., the best migrated) image from the time-remigrated panels.
The migration velocity used in that best migrated image may therefore define a reliable
velocity model. This is the key of using remigration for the velocity scan.

Thus, the constant-velocity scan procedure may be performed in three cascaded ways:

� searching for a target zone with a gently curved/dipping reflector where a prede-
fined or a-priori “constant-velocity” region may be assumed,

� doing the remigration or in this case perturbing the (unmigrated/migrated) section
by continuously changing the migration velocity,

� scanning the animated images produced by the above step and searching for a fo-
cusing events caused by a collapses of presumably hyperbolic-like events.

REAL DATA EXAMPLE: RESULT AND DISCUSSION

For the renovation of the surface layer of a bridge, a set of holes have to be drilled into
the concrete body in order to anchor the new layer. Because of the safety of the drilling
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Figure 2: Panel of time-migrated images. The migration velocity of 0.11 m/ns is used
for the upper image. In the lower image we depict the time-migrated image for migration
velocity of 0.13 m/ns.

worker and because of stability reasons of the bridge, the reinforcement steels should not
be damaged by this work. Therefore it was necessary to determine very precisely the
position of the steel cables. For their detection we used electromagnetic waves in the
GPR-frequency range of 900 MHz. The transmitter and receiver dipole were oriented
parallel to the cables, while the antenna crossed them perpendicular. The resulting time
section consists of 900 scans, which are in fact common offset traces. We then have
applied a static shift in order to get the ZO time section. The spatial-trace and the time-
sample interval are�x = 0:02 m and�t = 0:039 ns, respectively. Since we can assume
that the electrical conductivity� in this case is small, the proposed remigration technique
can be applied to estimate the velocity which is necessary for the determination of the
cable depth.

Strong diffraction pattern at two-way traveltimes of about 1 to 3 ns indicate the steel
cables (see figure 1). This plays a very important role in the determination of the migra-
tion velocities. The reason is very simple; the remigration process lets the hyperbola-like
diffraction pattern collapse into its so-called focusing point. This is the case when the
migration velocity corresponds to the medium velocity. This fact immediately justifies to
perform a migration-image scan in order to search for the correct migration-velocity and
the best possible image. However, horizontal reflector elements are not changed at all by
changing the constant migration velocity.

Figure 2 and 3 show a set of remigration results for a velocity range0:11 � 0:17
m/ns with the migration velocity step0:02 m/ns. By the above remigration algorithm
this scanning procedure is in fact very easily performed as many time-migrated images
result from applying equation (5) to the time-migrated image wavefieldp(x; t; v). One
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Figure 3: Panel of time-migrated images. The migration velocity of0:15 m/ns is used for
the upper image. In the lower image the time-migrated image is depicted for migration
velocities of0:17 m/ns.

observes that the remigration process acts very clearly on the diffraction pattern as we
have mentioned above. The only task of the interpreter is to pick the best focused (i.e.,
the best migrated) image. The best result is obtained for the range of migration velocities
of v = 0:11 � 0:13 m/ns. Figure 4 shows a cross section of the concrete bridge body
for a length of11 m which corresponds to the coordinate range of7 � 18 m of the GPR-
profile. The estimated positions of the steel cables are indicated by small dots. Note that
the reflection from the interface concrete-air in the depth0:7 m is out of the recording
range.

CONCLUSIONS

Traditional time-migration schemes are based on the scalar wave-equation. They can
only provide one post-stack time-migrated section for one migration velocity at a time.
With the image-wave equation (5) a complete set of time-migrated sections for a con-
tinuum of migration velocities (i.e., a set of snapshots of the propagating image waves)
results as part of one and the same algorithm. We have shown that if the medium that we
work with is homogeneous with respect to the propagation velo city we can employ the
proposed method in a very efficient way. It works very well only for a more or less homo-
geneous velocity medium. It is, however, applicable to image many different structures
such as voids in concrete or limestones, or buried objects like pipes or tanks.

We have shown that the proposed time remigration technique can be used on GPR
data in resistive media, where reflection and diffraction events are recorded. The pro-
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Figure 4: Cross section of the concrete-bridge body. The detected steel cables are in-
dicated by black dots. The horizontal extension corresponds to the coordinate range of
7 � 18 m of the GPR-profile.

posed theory can of course be generalized to 3-D radar data, see e.g., Grasmueck (1996)
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