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ABSTRACT

We present analytical expressions for normal-moveout velocities of reflections from a
horizontal reflector for homogeneous models of general anisotropy. The formulae are
valid for strong anisotropy and can be applied inside and outside of symmetry planes.
They are expressed either in terms of first derivatives of ray (group) velocity vector or in
terms of second derivatives of phase velocity. The results can be reduced to the particular
cases of symmetry planes or to the case of weak anisotropy by using perturbation the-
ory. Numerical examples for triclinic Lavoux limestone with phase velocity anisotropy of
about 10% are presented. The exact NMO-formulae allow to investigate the accuracy of
the weak anisotropy approximation of the NMO-velocity. The weak anisotropy approxi-
mation of NMO velocity performs less good than the weak anisotropy approximation of
the phase velocity. For phase velocity variations in the order of 10% relative errors of
the NMO velocities are about 1.5%. This appears to be sufficient for a velocity analysis.

Methods of seismic processing designed for isotropic media are no longer applicable
if the media are anisotropic. Elastic anisotropy seriously distorts the results of processing
of seismic data like velocity analysis, stacking, depth conversion, migration, etc. Itis also
well known that anisotropy influences the normal moveout velocity of a reflector (Krey
and Helbig, 1956). Most work on normal moveout in the past was related to transversely
isotropic media or to media of elliptical anisotropy. Recently (Tsvankin, 1995) derived
a formula for the normal-moveout velocity for arbitrary anisotropy, however, this results
are valid in symmetry planes. (Sayers, 1995) used spherical harmonics to describe reflec-
tion moveout in general anisotropic media and (Gajewski and Psenc’k, 1997) derived a
formula for moveout velocity for arbitrary weakly anisotropic media using perturbation
theory. We will derive here analytical formulae of the normal-moveout velocity for arbi-
trary homogeneous anisotropic models which are valid for strong anisotropy and which
are applicable outside of symmetry planes.
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NORMAL MOVEOUT IN ANISOTROPIC MEDIA

The expression normal moveout in this work relates to hyperbolic moveout, i.e., we ob-
tain a strait line in d&? — X? graph and the normal moveout velocity corresponds to the
slope of this line. As a starting point we use the expression of (Grechka and Tsvankin,
1996):
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Herep, is the slowness vectof, is two-way travel time and is one way travel time¢
specifies the orientation of the profile,are mid point (CMP) coordinates, the hat above

a quantity indicates the zero offset ray (hefe— 0, x; — 0). Eg. 1 can be used in ray
modeling programs, since the partial derivatives of the slowness w.r.t. CMP coordinates
can be obtained from results of dynamic ray tracing. In the following we show, that
for the particular case of the zero offset ray we can derive analytical expressions for the
derivatives occurring in eq. 1.

ALTERNATIVE EXPRESSIONS FOR THE NMO VELOCITY

Rays are most conveniently (and uniquely) described by ray coordinates.,
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wheren; corresponds to the phase normal of the ray. For the zero offset ray 0 and
12 — 0,i.e,n; = (0,0,1). Since the slowness is definedjas= n;/v, wheren; is the
phase normal andis the phase velocity along, we obtain for the partial derivatives of
p; W.r.t. ray coordinates see, e.g., (Gajewski, 1993)
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wherew; corresponds to the ray velocity vector (upper case indices take values 1 and
2). The partial derivatives of; are obtained from eq. 2. The remaining problem is to
find the transformation matrix, which transforms the partial derivatives; dfom ray

to CMP coordinates. For a homogeneous anisotropic medium we obtain from the ray
tracing system the following set of parametric equations for one-way travel time and

CMP coordinates, ,
w
t(vs) = — erys) =h— . (4)

3 w3
This expressions can be exploited to derive expressions for the sought transformation
matrix %
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Assuming a horizontal reflector at depgtland using the parametric equations and the
eikonal equation for anisotropic media one can show that the two-way traveltime of the
zero offset ray is
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wheret is the phase velocity of the zero offset ray. Using eq. 4 we obtain a new expres-
sion for the normal moveout velocity,
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with D = Sogm — gk Analytical expressions for the partial derivatives of the ray
velocity vectorw; w.r.t. ray coordinates; can be found in, e.g., (Gajewski and Psenc’k,

1990).

The eikonal equation for anisotropic medigp; = 1 allows us to derive another
form of the NMO velocity in arbitrary anisotropic media. Differentiation of the eikonal
equation two times w.r.t. ray coordinates links 2nd and 1st derivatives of ray velocity
together, because we get in the limiting case of the zero offset ray
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Rewriting the eikonal equation into the formnr,; = v and two times differentiation w.r.t.
ray coordinates gives
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where we have used eq. 7. Putting eq. 8 into 6 we can write an expression for the NMO
velocity which depends entirely on the phase velocity and its derivatives:
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whereD = (5 + W) (b+ W) — (522-)". With egs. 1, 6 and 9 we have a set of
NMO equations for arbitrary anisotropic media, depending either on the derivatives of
the slowness vector w.r.t. CMP coordinates or to the 1st derivatives of the ray velocity
vector or the 2nd derivatives of the phase velocity w.r.t. ray coordinates. The expressions

can be chosen in accordance to the problem at hand, i.e., which data are available.
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NMO VELOCITY IN SYMMETRY PLANES

The last equation (or alternatively eq. 6) allows to obtain an expression for the NMO-
velocity in symmetry planes. This is a 2-D problem since the rays are located in the plane
of incidence. Let us consider the — x3 plane. Here the NMO equations 6 and 9 result

in the following expression
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This result corresponds to (Tsvankin, 1995) for the NMO-velocity in symmetry planes of
arbitrary anisotropic media with a dipping interface if specified for a horizontal reflector
(see his eq. 9). Expressions for the other symmetry planes of the medium are obtained
accordingly.

SPECIFICATION FOR WEAK ANISOTROPY

In this section we consider the moveout of quasi P-waves. For weak anisotropy we as-
sume an isotropic background medium with isotropic constant P-wave vetacithe
anisotropy of the medium is considered to be weak. The phase velocity consists of two
parts: the isotropic background velocityand a small correctiorhv, which represents

the influence of the anisotropy, i.e.,= « + Av. This correction for quasi P-waves is
(Cervery & Jech, 1982\v = S/2a* and

2
S = QRN ;npn — (11)

Herea,;;; are density normalized elastic coefficients. Two times differentiation of the last
expression, considering the zero offset ray and putting the results into eq. 9 we obtain (by
keeping only linear terms) another version of the NMO equation which is approximately
valid for weakly anisotropic media
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Since the derivatives &f are easily obtained from eq. 11 and using the vertical velocity
as background velocity, i.ev? = as3 (compressed notation for elastic coefficients), we
arrive at the final expression
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with the anisotropy parametafg — M 6@ = a23+2a44 w33 andé = a36—|—2a45

These anisotropy parameters are formally S|m|Iar to Thomsen's (ﬁm)almeter for
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transversely isotropic media, however, they are expressed in linear form and general-
ized for arbitrary anisotropy (for more details on anisotropy parameters for arbitrary
anisotropic media, see (Gajewski and Psenc’k, 1996; Mensch and Rasolofosaon, 1997;
Tsvankin, 1997).

In the paragraphs above several variants of equations for the hyperbolic NMO veloc-
ity in homogeneous media with a horizontal reflector were derived. They are applica-
ble within and outside of symmetry planes for arbitrary anisotropy. In the next section
we will apply these formulae to a triclinic model and discuss the accuracy of the weak
anisotropy approximation.

NUMERICAL EXAMPLES

A saturated Lavoux limestone is considered (for elastic parameters, see Mensch and Ra-
solofosaon, 1997. The phase velocity variations of this sample in dependence of polar
angle and azimuth are displayed in Fig.1. The maxingdhwave phase velocity varia-

tion is a little more than 10%. The governing anisotropy parameters of the NMO equation
13 ared® = —0.1, 6V = —0.08 andé = 0, i.e., they are in the order of 10%. In Fig. 2

Azimuth [deg]
0

Polar angle [deg]

Velocity [km/s], lime

Figure 1: ¢ P wave phase velocities of saturated Lavoux limestone. Maximum phase
velocity variations are about 10%.

the exact NMO velocity (black curve) and the NMO velocity in weak anisotropy approx-
imation (WA) is shown. The WA value is always larger than the exact value, which was
computed by eq. 1 using the ANRAY program package (Gajewski and Psenc’k, 1990) to
compute the partial derivatives of the slowness vector by dynamic ray tracing. A slight
shift of minimum and maximum between exact and WA solution is visible in Fig.2 which
would lead to an error in the orientation of the anisotropic reference coordinate system
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Figure 2:¢ P wave NMO velocity of saturated Lavoux limestone, exact (black curve) and
for the weak anisotropy approximation (gray curve).

(e.g. the orientation of an inclined fracture system). However, this deviations are fairly

small. The relative error between exact and WA result is shown in Fig. 3. The maximum

relative error is about 1.6% and the smallest error is about 0.8%. This is less good than
the weak anisotropy approximation of the phase velocity, which is everywhere below

0.5% for this sample. This, however, is no surprise, since the linearization of the NMO

velocities required the neglect of more higher order terms (see above), than linearizing
the phase velocity.

CONCLUSIONS

Exact formulae for moveout velocities in arbitrary homogeneous anisotropic media were
derived. The formulae are valid as long as ftfe— X? curve can be approximated by a
straightline (i.e., a hyperbolic moveout is assumed). The extension of the obtained results
to layered media resulting in a Dix-style type of formula should be straight forward.
Also the extension to dipping interfaces should not involve major complications, since
this only changes the transformation from ray to CMP coordinates. All other relations
are gained through a rotation, such that the zero offset ray hits the inclined interface
perpendicularly.

The exact NMO equations allowed to investigate the accuracy of the weak anisotropy
approximation within and outside of symmetry planes. Itis generally less precise than the
weak anisotropy approximation of the phase velocity for the same model. This, however,
IS no surprise, since the weak anisotropy approximation of the NMO velocity accumu-
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Figure 3: Relative error between exact and approximate NMO velocities for saturated
Lavoux limestone.

lates more errors owing to the neglect of several higher order terms. However, if the
magnitude of the governing anisotropy parameters is about 10%, the weak anisotropy
approximation has maximum errors of about 1.5%, which is sufficient for a velocity de-
termination procedure.
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PUBLICATIONS

More details on the derivation of the NMO velocity for the weak anisotropy approxima-
tion are described in (Gajewski and Psenc’k, 1997).



