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Finite-difference traveltime computations for anisotropic
media
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ABSTRACT

A 2D finite-difference eikonal solver for elliptically anisotropic media is developed. It is
based on a second-order approximation of traveltimes; points are successively timed on
expanding squares around the source. Since elliptical anisotropy is of limited significance
for real subsurfaces a perturbation scheme of first order is introduced to consider, in
principle, arbitrary symmetry systems. Using reference media with elliptical anisotropy
improves accuracy of this FD-perturbation method compared to usage of isotropic refer-
ence media.

INTRODUCTION

Several finite-difference (FD) methods for computing traveltimes to a large number of
points of a discretized subsurface isotropic model have been developed, e.g. (Vidale,
1988), and some extensions to anisotropic media also exist, e.g. (Dellinger, 1991; Lecomte,
1993). The latter are either restricted to transversely isotropic media or involve the un-
stable process of solving a higher order polynomial numerically. We consider a different
approach for anisotropic media. Since anisotropy in the earth is usually weak (< 10%)
we compute traveltimes in slightly anisotropic media by perturbation. A highly efficient
method using reference isotropic models where the perturbation integrals are introduced
into the FD-eikonal solver by (Vidale, 1988) was implemented by (Ettrich and Gajewski,
1996). We now improve accuracy by extending Vidale's eikonal solver and the FD-
perturbation method to reference media with elliptical anisotropy.

REFERENCE MODELS OF ELLIPTICAL ANISOTROPY

P-wave slowness surfaces are elliptically shaped, if elastic parameters of transversely
isotropic media follow the relation(a1111�a2323)(a3333�a2323) = (a1133+a2323)2. Then
the slowness surface (in 2D) reads

Ap2x + Cpxpz +Bp2z = 1: (1)
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px; pz denote components of the slowness vector, andA, B, andC are functions of verti-
cal and horizontal phase velocity of the considered wave type and of the orientation of the
crystal coordinate system. The procedure for the derivation of the reference traveltimet3
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Figure 1: Grid cell with known traveltimes atP0, P1 andP2. A locally plane wavefront
is assumed to propagate through the cell to computet3 atP3.

atP3 (see Figure 1) is analogous to the isotropic case (Vidale, 1988). In equation (1) the
slowness vector is approximated by centered finite differences, and we obtain

t3 = t0 +
(B �A)(t1 � t2)�

q
4h2(A+B + C)� (t1 � t2)2(4AB � C2)

A+ C +B
; (2)

wheret0,t1, andt2 are traveltimes atP0, P1, andP2, respectively. As in (Vidale, 1988) the
computational scheme follows squares expanding around the source. Causality requires
that traveltimes at those points of the current square are computed first where the compo-
nent of the group velocity vector which is tangent to the actual side of the square changes
its sign. In isotropic media this is equivalent to consider the phase velocity vector by
choosing the minimum traveltime point, however, for elliptical anisotropy this requires
to compute the angle�G of the group velocity vector:

�G = arctan
�
C + 2A tan�Ph

C tan�Ph + 2B

�
; (3)

where�Ph is the angle of the slowness vector, which is known by differences of travel-
times.

An application of the method is demonstrated in Figure 2. For stability and for re-
duction of staircase artifacts due to dipping interfaces a slight smoothing was necessary.

Considering any other anisotropic medium, to first-order the traveltimet between
pointsS andP is obtained by adding an integral expression to the traveltimetellip(P; S)
in the elliptical reference medium:

t(P; S) = tellip(P; S) � 1

2

Z
ray(P;S)

�aijklgjgkpipldt: (4)
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Figure 2: Wavefronts in an elliptically anisotropic model. Dashed lines display interfaces
before smoothing. Phase velocities of the model blocks are displayed by ellipses. Size
and rotation of ellipses reflect velocity ratios.

All quantities of the integrand, i.e., slowness vectorpi, polarization vectorgi and dif-
ferences of elastic coefficients�aijkl between the given anisotropic and the elliptically
anisotropic reference medium have to be computed along the ray in the reference medium.
The raypath in the background medium is approximated by ray segments corresponding
to the plane waves in each cell (see Figure 1) (Ettrich and Gajewski, 1996).
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Figure 3: Left figure: Exact wavefronts (solid) in a homogeneous model of transversely
isotropic Taylor sandstone and wavefronts (dashed) in the isotropic reference medium.
Right figure: Exact (solid) and FD-perturbation wavefronts (dashed) with an underlying
gray scale image of relative errors. Black color corresponds to a maximum error of
0:76%.

To demonstrate the advantage of reference media of elliptical anisotropy we show
results for a homogeneous model of Taylor sandstone (Thomsen, 1993) with Thomsen
parameters� = 0:11 and� = �0:035. Accuracy is considerably higher in Figure 4 for
an elliptically anisotropic reference medium than in Figure 3 for an isotropic reference
medium.
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Figure 4: Same as Figure 3 but with elliptically anisotropic reference medium. Black
color corresponds to a maximum error of0:2%.

CONCLUSION

The extension of Vidale's FD-eikonal solver to media with elliptical anisotropy turns out
to be stable in weakly smoothed models. Application of perturbation techniques allows
to consider arbitrary symmetry systems. However, the method must first be extended to
3D. Isotropic or elliptically anisotropic reference media can be used depending on the
higher importance of either speed or accuracy of the computation.
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PUBLICATIONS

Detailed results will be published in (Ettrich and Gajewski, 1997).


